January 16, 2017
Employing nonparametric methods for density estimation has become routine in Bayesian statistical practice. Models based on discrete nonparametric priors such as Dirichlet Process Mixture (DPM) models are very attractive choices due to their flexibility and tractability. However, a common problem in fitting DPMs or other discrete models to data is that they tend to produce a large number of (sometimes) redundant clusters. In this work we propose a method that produces parsimonious mixture models (i.e. mixtures that discourage the creation of redundant clusters), without sacrificing flexibility or model fit. This method is based on the idea of repulsion, that is, that any two mixture components are encouraged to be well separated. We propose a family of d-dimensional probability densities whose coordinates tend to repel each other in a smooth way. The induced probability measure has a close relation with Gibbs measures, graph theory and point processes. We investigate its global properties and explore its use in the context of mixture models for density estimation. Computational techniques are detailed and we illustrate its usefulness with some well-known data sets and a small simulation study.
Similar papers 1
April 24, 2012
Discrete mixture models are routinely used for density estimation and clustering. While conducting inferences on the cluster-specific parameters, current frequentist and Bayesian methods often encounter problems when clusters are placed too close together to be scientifically meaningful. Current Bayesian practice generates component-specific parameters independently from a common prior, which tends to favor similar components and often leads to substantial probability assigne...
March 27, 2017
We develop a general class of Bayesian repulsive Gaussian mixture models that encourage well-separated clusters, aiming at reducing potentially redundant components produced by independent priors for locations (such as the Dirichlet process). The asymptotic results for the posterior distribution of the proposed models are derived, including posterior consistency and posterior contraction rate in the context of nonparametric density estimation. More importantly, we show that c...
October 9, 2022
Mixture models are a standard tool in statistical analysis, widely used for density modeling and model-based clustering. Current approaches typically model the parameters of the mixture components as independent variables. This can result in overlapping or poorly separated clusters when either the number of clusters or the form of the mixture components is misspecified. Such model misspecification can undermine the interpretability and simplicity of these mixture models. To a...
June 19, 2023
Mixture models are commonly used in applications with heterogeneity and overdispersion in the population, as they allow the identification of subpopulations. In the Bayesian framework, this entails the specification of suitable prior distributions for the weights and location parameters of the mixture. Widely used are Bayesian semi-parametric models based on mixtures with infinite or random number of components, such as Dirichlet process mixtures or mixtures with random numbe...
January 14, 2015
The parsimonious Gaussian mixture models, which exploit an eigenvalue decomposition of the group covariance matrices of the Gaussian mixture, have shown their success in particular in cluster analysis. Their estimation is in general performed by maximum likelihood estimation and has also been considered from a parametric Bayesian prospective. We propose new Dirichlet Process Parsimonious mixtures (DPPM) which represent a Bayesian nonparametric formulation of these parsimoniou...
November 12, 2020
Repulsive mixture models have recently gained popularity for Bayesian cluster detection. Compared to more traditional mixture models, repulsive mixture models produce a smaller number of well separated clusters. The most commonly used methods for posterior inference either require to fix a priori the number of components or are based on reversible jump MCMC computation. We present a general framework for mixture models, when the prior of the `cluster centres' is a finite repu...
February 17, 2023
The study of almost surely discrete random probability measures is an active line of research in Bayesian nonparametrics. The idea of assuming interaction across the atoms of the random probability measure has recently spurred significant interest in the context of Bayesian mixture models. This allows the definition of priors that encourage well separated and interpretable clusters. In this work, we provide a unified framework for the construction and the Bayesian analysis of...
October 1, 2013
The Dirichlet process mixture model and more general mixtures based on discrete random probability measures have been shown to be flexible and accurate models for density estimation and clustering. The goal of this paper is to illustrate the use of normalized random measures as mixing measures in nonparametric hierarchical mixture models and point out how possible computational issues can be successfully addressed. To this end, we first provide a concise and accessible introd...
April 7, 2020
The mixture extension of exponential family principal component analysis (EPCA) was designed to encode much more structural information about data distribution than the traditional EPCA does. For example, due to the linearity of EPCA's essential form, nonlinear cluster structures cannot be easily handled, but they are explicitly modeled by the mixing extensions. However, the traditional mixture of local EPCAs has the problem of model redundancy, i.e., overlaps among mixing co...
March 4, 2023
Model-based clustering of moderate or large dimensional data is notoriously difficult. We propose a model for simultaneous dimensionality reduction and clustering by assuming a mixture model for a set of latent scores, which are then linked to the observations via a Gaussian latent factor model. This approach was recently investigated by Chandra et al. (2020). The authors use a factor-analytic representation and assume a mixture model for the latent factors. However, performa...