August 2, 2023
Machine learning (ML) is a promising approach for predicting small molecule properties in drug discovery. Here, we provide a comprehensive overview of various ML methods introduced for this purpose in recent years. We review a wide range of properties, including binding affinities, solubility, and ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity). We discuss existing popular datasets and molecular descriptors and embeddings, such as chemical fingerprints and graph-based neural networks. We highlight also challenges of predicting and optimizing multiple properties during hit-to-lead and lead optimization stages of drug discovery and explore briefly possible multi-objective optimization techniques that can be used to balance diverse properties while optimizing lead candidates. Finally, techniques to provide an understanding of model predictions, especially for critical decision-making in drug discovery are assessed. Overall, this review provides insights into the landscape of ML models for small molecule property predictions in drug discovery. So far, there are multiple diverse approaches, but their performances are often comparable. Neural networks, while more flexible, do not always outperform simpler models. This shows that the availability of high-quality training data remains crucial for training accurate models and there is a need for standardized benchmarks, additional performance metrics, and best practices to enable richer comparisons between the different techniques and models that can shed a better light on the differences between the many techniques.
Similar papers 1
February 13, 2025
Due to their excellent drug-like and pharmacokinetic properties, small molecule drugs are widely used to treat various diseases, making them a critical component of drug discovery. In recent years, with the rapid development of deep learning (DL) techniques, DL-based small molecule drug discovery methods have achieved excellent performance in prediction accuracy, speed, and complex molecular relationship modeling compared to traditional machine learning approaches. These adva...
February 11, 2020
The prediction of absorption, distribution, metabolism, excretion, and toxicity (ADMET) of small molecules from their molecular structure is a central problem in medicinal chemistry with great practical importance in drug discovery. Creating predictive models conventionally requires substantial trial-and-error for the selection of molecular representations, machine learning (ML) algorithms, and hyperparameter tuning. A generally applicable method that performs well on all dat...
July 25, 2023
Predicting drug properties is key in drug discovery to enable de-risking of assets before expensive clinical trials, and to find highly active compounds faster. Interest from the Machine Learning community has led to the release of a variety of benchmark datasets and proposed methods. However, it remains unclear for practitioners which method or approach is most suitable, as different papers benchmark on different datasets and methods, leading to varying conclusions that are ...
March 1, 2023
With the development of computer-assisted techniques, research communities including biochemistry and deep learning have been devoted into the drug discovery field for over a decade. Various applications of deep learning have drawn great attention in drug discovery, such as molecule generation, molecular property prediction, retrosynthesis prediction, and reaction prediction. While most existing surveys only focus on one of the applications, limiting the view of researchers i...
September 30, 2024
Protein-ligand binding is the process by which a small molecule (drug or inhibitor) attaches to a target protein. The binding affinity, which refers to the strength of this interaction, is central to many important problems in bioinformatics such as drug design. An extensive amount of work has been devoted to predicting binding affinity over the past decades due to its significance. In this paper, we review all significant recent works, focusing on the methods, features, and ...
August 18, 2024
Molecular Property Prediction (MPP) plays a pivotal role across diverse domains, spanning drug discovery, material science, and environmental chemistry. Fueled by the exponential growth of chemical data and the evolution of artificial intelligence, recent years have witnessed remarkable strides in MPP. However, the multifaceted nature of molecular data, such as molecular structures, SMILES notation, and molecular images, continues to pose a fundamental challenge in its effect...
August 1, 2024
Machine learning (ML) is revolutionising drug discovery by expediting the prediction of small molecule properties essential for developing new drugs. These properties -- including absorption, distribution, metabolism and excretion (ADME)-- are crucial in the early stages of drug development since they provide an understanding of the course of the drug in the organism, i.e., the drug's pharmacokinetics. However, existing methods lack personalisation and rely on manually crafte...
November 13, 2019
One of the key requirements for incorporating machine learning into the drug discovery process is complete reproducibility and traceability of the model building and evaluation process. With this in mind, we have developed an end-to-end modular and extensible software pipeline for building and sharing machine learning models that predict key pharma-relevant parameters. The ATOM Modeling PipeLine, or AMPL, extends the functionality of the open source library DeepChem and suppo...
February 21, 2025
Drug discovery remains a slow and expensive process that involves many steps, from detecting the target structure to obtaining approval from the Food and Drug Administration (FDA), and is often riddled with safety concerns. Accurate prediction of how drugs interact with their targets and the development of new drugs by using better methods and technologies have immense potential to speed up this process, ultimately leading to faster delivery of life-saving medications. Tradit...
June 13, 2024
Molecular representation learning is pivotal for various molecular property prediction tasks related to drug discovery. Robust and accurate benchmarks are essential for refining and validating current methods. Existing molecular property benchmarks derived from wet experiments, however, face limitations such as data volume constraints, unbalanced label distribution, and noisy labels. To address these issues, we construct a large-scale and precise molecular representation data...