June 23, 2023
We show that fractality in complex networks arises from the geometric self-similarity of their built-in hierarchical community-like structure, which is mathematically described by the scale-invariant equation for the masses of the boxes with which we cover the network when determining its box dimension. This approach - grounded in both scaling theory of phase transitions and renormalization group theory - leads to the consistent scaling theory of fractal complex networks, whi...
July 28, 2005
Based on a rigorous extension of classical statistical mechanics to networks, we study a specific microscopic network Hamiltonian. The form of this Hamiltonian is derived from the assumption that individual nodes increase/decrease their utility by linking to nodes with a higher/lower degree than their own. We interpret utility as an equivalent to energy in physical systems and discuss the temperature dependence of the emerging networks. We observe the existence of a critical ...
October 10, 2007
We demonstrate that the self-similarity of some scale-free networks with respect to a simple degree-thresholding renormalization scheme finds a natural interpretation in the assumption that network nodes exist in hidden metric spaces. Clustering, i.e., cycles of length three, plays a crucial role in this framework as a topological reflection of the triangle inequality in the hidden geometry. We prove that a class of hidden variable models with underlying metric spaces are abl...
June 26, 2016
We present a purely geometric renormalization scheme for metric spaces (including uncolored graphs), which consists of a coarse graining and a rescaling operation on such spaces. The coarse graining is based on the concept of quasi-isometry, which yields a sequence of discrete coarse grained spaces each having a continuum limit under the rescaling operation. We provide criteria under which such sequences do converge within a superspace of metric spaces, or may constitute the ...
April 26, 2019
Structural connectivity in the brain is typically studied by reducing its observation to a single spatial resolution. However, the brain possesses a rich architecture organized over multiple scales linked to one another. We explored the multiscale organization of human connectomes using datasets of healthy subjects reconstructed at five different resolutions. We found that the structure of the human brain remains self-similar when the resolution of observation is progressivel...
October 17, 2001
We model quantum space-time on the Planck scale as dynamical networks of elementary relations or time dependent random graphs, the time dependence being an effect of the underlying dynamical network laws. We formulate a kind of geometric renormalisation group on these (random) networks leading to a hierarchy of increasingly coarse-grained networks of overlapping lumps. We provide arguments that this process may generate a fixed limit phase, representing our continuous space-t...
April 27, 2007
The science of complex networks is a new interdisciplinary branch of science which has arisen recently on the interface of physics, biology, social and computer sciences, and others. Its main goal is to discover general laws governing the creation and growth as well as processes taking place on networks, like e.g. the Internet, transportation or neural networks. It turned out that most real-world networks cannot be simply reduced to a compound of some individual components. F...
December 3, 2006
At the eight-year anniversary of Watts & Strogatz's work on the collective dynamics of small-world networks and seven years after Barabasi & Albert's discovery of scale-free networks, the area of dynamical processes on complex networks is at the forefront of the current research on nonlinear dynamics and complex systems. This volume brings together a selection of original contributions in complementary topics of statistical physics, nonlinear dynamics and biological sciences,...
August 27, 2004
We have defined a new type of clustering scheme preserving the connectivity of the nodes in network ignored by the conventional Migdal-Kadanoff bond moving process. Our new clustering scheme performs much better for correlation length and dynamical critical exponents in high dimensions, where the conventional Migdal-Kadanoff bond moving scheme breaks down. In two and three dimensions we find the dynamical critical exponents for the kinetic Ising Model to be z=2.13 and z=2.09,...
October 31, 2023
Heterogeneity and geometry are key explanatory components underlying the structure of real-world networks. The relationship between these components and the statistical complexity of networks is not well understood. We introduce a parsimonious normalised measure of statistical complexity for networks -- normalised hierarchical complexity. The measure is trivially 0 in regular graphs and we prove that this measure tends to 0 in Erd\"os-R\'enyi random graphs in the thermodynami...