August 28, 2007
Beginning with a discussion of R. A. Fisher's early written remarks that relate to dimension reduction, this article revisits principal components as a reductive method in regression, develops several model-based extensions and ends with descriptions of general approaches to model-based and model-free dimension reduction in regression. It is argued that the role for principal components and related methodology may be broader than previously seen and that the common practice o...
June 16, 2022
The Convex Gaussian Min-Max Theorem (CGMT) has emerged as a prominent theoretical tool for analyzing the precise stochastic behavior of various statistical estimators in the so-called high dimensional proportional regime, where the sample size and the signal dimension are of the same order. However, a well recognized limitation of the existing CGMT machinery rests in its stringent requirement on the exact Gaussianity of the design matrix, therefore rendering the obtained prec...
March 22, 2015
We consider high-dimensional inference when the assumed linear model is misspecified. We describe some correct interpretations and corresponding sufficient assumptions for valid asymptotic inference of the model parameters, which still have a useful meaning when the model is misspecified. We largely focus on the de-sparsified Lasso procedure but we also indicate some implications for (multiple) sample splitting techniques. In view of available methods and software, our result...
August 25, 2023
In these six lectures, we examine what can be learnt about the behavior of multi-layer neural networks from the analysis of linear models. We first recall the correspondence between neural networks and linear models via the so-called lazy regime. We then review four models for linearized neural networks: linear regression with concentrated features, kernel ridge regression, random feature model and neural tangent model. Finally, we highlight the limitations of the linear theo...
June 1, 2013
Least-squares refitting is widely used in high dimensional regression to reduce the prediction bias of l1-penalized estimators (e.g., Lasso and Square-Root Lasso). We present theoretical and numerical results that provide new insights into the benefits and pitfalls of least-squares refitting. In particular, we consider both prediction and estimation, and we pay close attention to the effects of correlations in the design matrices of linear regression models, since these corre...
December 29, 2013
We compute a \emph{sparse} solution to the classical least-squares problem $\min_x||A x -b||,$ where $A$ is an arbitrary matrix. We describe a novel algorithm for this sparse least-squares problem. The algorithm operates as follows: first, it selects columns from $A$, and then solves a least-squares problem only with the selected columns. The column selection algorithm that we use is known to perform well for the well studied column subset selection problem. The contribution ...
May 2, 2013
In the high-dimensional regression model a response variable is linearly related to $p$ covariates, but the sample size $n$ is smaller than $p$. We assume that only a small subset of covariates is `active' (i.e., the corresponding coefficients are non-zero), and consider the model-selection problem of identifying the active covariates. A popular approach is to estimate the regression coefficients through the Lasso ($\ell_1$-regularized least squares). This is known to correct...
October 17, 2016
Given data y(n) and p(n)covariates x(n) one problem in linear regression is to decide which if any of the covariates to include. There are many articles on this problem but all are based on a stochastic model for the data. This paper gives what seems to be a new approach which does not require any form of model. It is conceptually and algorithmically simple and consistency results can be proved under appropriate assumptions.
March 18, 2014
The Lasso is a computationally efficient regression regularization procedure that can produce sparse estimators when the number of predictors (p) is large. Oracle inequalities provide probability loss bounds for the Lasso estimator at a deterministic choice of the regularization parameter. These bounds tend to zero if p is appropriately controlled, and are thus commonly cited as theoretical justification for the Lasso and its ability to handle high-dimensional settings. Unfor...
September 28, 2017
We present a novel binary convex reformulation of the sparse regression problem that constitutes a new duality perspective. We devise a new cutting plane method and provide evidence that it can solve to provable optimality the sparse regression problem for sample sizes n and number of regressors p in the 100,000s, that is two orders of magnitude better than the current state of the art, in seconds. The ability to solve the problem for very high dimensions allows us to observe...