September 7, 2005
The nonperturbative renormalization group flow of Quantum Einstein Gravity (QEG) is reviewed. It is argued that there could be strong renormalization effects at large distances, in particular a scale dependent Newton constant, which mimic the presence of dark matter at galactic and cosmological scales.
Similar papers 1
February 7, 2007
The nonperturbative renormalization group flow of Quantum Einstein Gravity (QEG) is reviewed. It is argued that at large distances there could be strong renormalization effects, including a scale dependence of Newton's constant, which mimic the presence of dark matter at galactic and cosmological scales.
October 11, 2004
Assuming that Quantum Einstein Gravity (QEG) is the correct theory of gravity on all length scales we use analytical results from nonperturbative renormalization group (RG) equations as well as experimental input in order to characterize the special RG trajectory of QEG which is realized in Nature and to determine its parameters. On this trajectory, we identify a regime of scales where gravitational physics is well described by classical General Relativity. Strong renormaliza...
May 15, 2011
We propose a connection between global physics and local galactic dynamics via quantum gravity. The salient features of cold dark matter (CDM) and modified Newtonian dynamics (MOND) are combined into a unified scheme by introducing the concept of MONDian dark matter which behaves like CDM at cluster and cosmological scales but emulates MOND at the galactic scale.
December 8, 2000
This article contains a brief pedagogical introduction to various renormalization group related aspects of quantum gravity with an emphasis on the scale dependence of Newton's constant and on black hole physics.
February 10, 2011
We review our contribution to infrared Renormalization Group (RG) effects to General Relativity in the context of galaxies. Considering the effective action approach to Quantum Field Theory in curved background, we argued that the proper RG energy scale, in the weak field limit, should be related to the Newtonian potential. In the galaxy context, even without dark matter, this led to a remarkably small gravitational coupling G variation (about or less than 10^{-12} of its val...
January 7, 2019
The asymptotic safety program strives for a consistent description of gravity as a non-perturbatively renormalizable quantum field theory. In this framework the gravitational interactions are encoded in a renormalization group flow connecting the quantum gravity regime at trans-Planckian scales to observable low-energy physics. Our proceedings reviews the key elements underlying the predictive power of the construction and summarizes the state-of-the-art in determining its fr...
December 11, 2001
We summarize recent evidence supporting the conjecture that four-dimensional Quantum Einstein Gravity (QEG) is nonperturbatively renormalizable along the lines of Weinberg's asymptotic safety scenario. This would mean that QEG is mathematically consistent and predictive even at arbitrarily small length scales below the Planck length. For a truncated version of the exact flow equation of the effective average action we establish the existence of a non-Gaussian renormalization ...
May 20, 2015
A modified gravitational theory is developed in which the gravitational coupling constants $G$ and $Q$ and the effective mass $m_\phi$ of a repulsive vector field run with momentum scale $k$ or length scale $\ell =1/k$, according to a renormalization group flow. The theory can explain cosmological early universe data with a dark hidden photon and late time galaxy and cluster dynamics without dark matter. The theory agrees with solar system and binary pulsar observations.
September 7, 2010
I present a theory of quantum gravity based on the principle of gravitational energy fluctuations. Gravitational energy fluctuations -- gravitons -- are responsible for elastic scattering of subatomic particles. Such scattering corresponds to complimentary force -- graviton scattering force -- arising in gravitational interaction in addition to Newtonian gravity. The strength of the graviton scattering force is proportional to the graviton scattering probability. Unlike Newto...
October 8, 1992
We show how, by considering the cumulative effect of tiny quantum gravitational fluctuations over very large distances, it may be possible to: ($a$) reconcile nucleosynthesis bounds on the density parameter of the Universe with the predictions of inflationary cosmology, and ($b$) reproduce the inferred variation of the density parameter with distance. Our calculation can be interpreted as a computation of the contribution of quantum gravitational degrees of freedom to the (lo...