February 5, 2007
Similar papers 5
December 15, 2017
The Navier--Stokes order hydrodynamic equations for a low-density driven granular mixture obtained previously [Khalil and Garz\'o, Phys. Rev. E \textbf{88}, 052201 (2013)] from the Chapman--Enskog solution to the Boltzmann equation are considered further. The four transport coefficients associated with the heat flux are obtained in terms of the mass ratio, the size ratio, composition, coefficients of restitution, and the driven parameters of the model. Their quantitative vari...
February 27, 2014
The homogeneous state of a binary mixture of smooth inelastic hard disks or spheres is analyzed. The mixture is driven by a thermostat composed by two terms: a stochastic force and a drag force proportional to the particle velocity. The combined action of both forces attempts to model the interaction of the mixture with a bath or surrounding fluid. The problem is studied by means of two independent and complementary routes. First, the Enskog kinetic equation with a Fokker-Pla...
May 20, 2002
An isolated mixture of smooth, inelastic hard spheres supports a homogeneous cooling state with different kinetic temperatures for each species. This phenomenon is explored here by molecular dynamics simulation of a two component fluid, with comparison to predictions of the Enskog kinetic theory. The ratio of kinetic temperatures is studied for two values of the restitution coefficient, $\alpha =0.95$ and 0.80, as a function of mass ratio, size ratio, composition, and density...
October 1, 2009
In this review, a theoretical description is provided for the solid (granular) phase of the gas-solid flows that are the focus of this book. Emphasis is placed on the fundamental concepts involved in deriving a macroscopic hydrodynamic description for the granular material in terms of the hydrodynamic fields (species densities, flow velocity, and the granular temperature) from a prescribed "microscopic" interaction among the grains. To this end, the role of the interstitial g...
January 10, 2003
The hydrodynamics of granular gases of viscoelastic particles, whose collision is described by an impact-velocity dependent coefficient of restitution, is developed using a modified Chapman-Enskog approach. We derive the hydrodynamic equations and the according transport coefficients with the assumption that the shape of the velocity distribution function follows adiabatically the decaying temperature. We show numerically that this approximation is justified up to intermediat...
December 29, 2006
The expansion of the velocity distribution function for the homogeneous cooling state (HCS) in a Sonine polynomial series around a Maxwellian is shown to be divergent, though Borel resummable. A convergent expansion for the HCS has been devised and employed to obtain the HCS velocity distribution function and (using it) the linear transport coefficients for a three dimensional monodisperse granular gas of smooth inelastic spheres, for all physical values of the coefficient of...
October 11, 2023
The Enskog kinetic equation is considered to determine the mobility $\lambda$ and diffusion $D$ transport coefficients of intruders immersed in a granular gas of inelastic hard spheres (grains). Intruders and grains are in contact with a thermal bath, which plays the role of a background gas. As usual, the influence of the latter on the dynamics of intruders and grains is accounted for via a viscous drag force plus a stochastic Langevin-like term proportional to the backgroun...
June 10, 2003
The shear viscosity for a moderately dense granular binary mixture of smooth hard spheres undergoing uniform shear flow is determined. The basis for the analysis is the Enskog kinetic equation, solved first analytically by the Chapman-Enskog method up to first order in the shear rate for unforced systems as well as for systems driven by a Gaussian thermostat. As in the elastic case, practical evaluation requires a Sonine polynomial approximation. In the leading order, we dete...
September 30, 2009
Kinetic properties of a granular gas of viscoelastic particles in a homogeneous cooling state are studied analytically and numerically. We employ the most recent expression for the velocity-dependent restitution coefficient for colliding viscoelastic particles, which allows to describe systems with large inelasticity. In contrast to previous studies, the third coefficient a3 of the Sonine polynomials expansion of the velocity distribution function is taken into account. We ob...
June 20, 2023
The diffusion transport coefficients of a binary granular suspension where one of the components is present in tracer concentration are determined from the (inelastic) Enskog kinetic equation. The effect of the interstitial gas on the solid particles is accounted for in the kinetic equation through two different terms: (i) a viscous drag force proportional to the particle velocity and (ii) stochastic Langevin-like term defined in terms of the background temperature. The trans...