October 16, 2004
Similar papers 2
October 16, 2018
This article serves as an introduction to several recent developments in the study of quasisymmetric functions. The focus of this survey is on connections between quasisymmetric functions and the combinatorial Hopf algebra of noncommutative symmetric functions, appearances of quasisymmetric functions within the theory of Macdonald polynomials, and analogues of symmetric functions. Topics include the significance of quasisymmetric functions in representation theory (such as re...
October 31, 2017
In the 1995 paper entitled "Noncommutative symmetric functions," Gelfand, et. al. defined two noncommutative symmetric function analogues for the power sum basis of the symmetric functions, along with analogues for the elementary and the homogeneous bases. They did not consider the noncommutative symmetric power sum duals in the quasisymmetric functions, which have since been explored only in passing by Derksen and Malvenuto-Reutenauer. These two distinct quasisymmetric power...
October 21, 2004
This paper is concerned with two generalizations of the Hopf algebra of symmetric functions that have more or less recently appeared. The Hopf algebra of noncommutative symmetric functions and its dual, the Hopf algebra of quasisymmetric functions. The focus is on the incredibly rich structure of the Hopf algebra of symmetric functions and the question of which structures and properties have good analogues for the noncommutative symmetric functions and/or the quasisymmetric f...
January 16, 2022
We study the spaces $Q_m$ of $m$-quasi-invariant polynomials of the symmetric group $S_n$ in characteristic $p$. Using the representation theory of the symmetric group we describe the Hilbert series of $Q_m$ for $n=3$, proving a conjecture of Ren and Xu [arXiv:1907.13417]. From this we may deduce the palindromicity and highest term of the Hilbert polynomial and the freeness of $Q_m$ as a module over the ring of symmetric polynomials, which are conjectured for general $n$. We ...
July 20, 1994
This paper presents a noncommutative theory of symmetric functions, based on the notion of quasi-determinant. We begin with a formal theory, corresponding to the case of symmetric functions in an infinite number of independent variables. This allows us to endow the resulting algebra with a Hopf structure, which leads to a new method for computing in descent algebras. It also gives unified reinterpretation of a number of classical constructions. Next, we study the noncommutati...
April 2, 2019
The classical theory of symmetric functions has a central position in algebraic combinatorics, bridging aspects of representation theory, combinatorics, and enumerative geometry. More recently, this theory has been fruitfully extended to the larger ring of quasisymmetric functions, with corresponding applications. Here, we survey recent work extending this theory further to general asymmetric polynomials.
June 22, 2001
We define two-parameter families of noncommutative symmetric functions and quasi-symmetric functions, which appear to be the proper analogues of the Macdonald symmetric functions in these settings.
May 4, 2020
In this paper, we consider the generating functions of the complete and elementary symmetric functions and provide a new generalization of these classical symmetric functions. Some classical relationships involving the complete and elementary symmetric functions are reformulated in a more general context. Combinatorial interpretations of these generalized symmetric functions are also introduced.
May 8, 2017
In this note we define a generalization of Hall-Littlewood symmetric functions using formal group law and give an elementary proof of the generating function formula for the generalized Hall-Littlewood symmetric functions. We also give some applications of this formula.
March 11, 2024
The algebra of symmetric functions contains several interesting families of symmetric functions indexed by integer partitions or skew partitions. Given a sequence $\{u_n\}$ of symmetric functions taken from one of these families such that $u_n$ is homogeneous of degree $n$, we provide necessary and sufficient conditions for the sequence to form a system of algebraically independent generators for the algebra of symmetric functions.