May 19, 2005
Similar papers 5
October 8, 2020
The concept of 'complexity' plays a central role in complex network science. Traditionally, this term has been taken to express heterogeneity of the node degrees of a therefore complex network. However, given that the degree distribution is not enough to provide an invertible representation of a given network, additional complementary measurements of its topology are required in order to complement its characterization. In the present work, we aim at obtaining a new model of ...
August 19, 2014
Complex network theory has been used to study complex systems. However, many real-life systems involve multiple kinds of objects . They can't be described by simple graphs. In order to provide complete information of these systems, we extend the concept of evolving models of complex networks to hypernetworks. In this work, we firstly propose a non-uniform hypernetwork model with attractiveness, and obtain the stationary average hyperdegree distribution of the non-uniform hype...
December 5, 2022
To keep track of the importance of each vertex and each hyperedge of a hypergraph, we introduce some positive valued functions on the set of vertices and hyperedges, respectively. The terms vertex centrality and hyperedge centrality, respectively, refer to these functions on the set of vertices and hyperedges. The concepts of centrality vary according to the sense of importance. We introduce and investigate two eigenvector-based vertex centralities and one eigenvector-based h...
October 11, 2018
Despite the fact that many important problems (including clustering) can be described using hypergraphs, theoretical foundations as well as practical algorithms using hypergraphs are not well developed yet. In this paper, we propose a hypergraph modularity function that generalizes its well established and widely used graph counterpart measure of how clustered a network is. In order to define it properly, we generalize the Chung-Lu model for graphs to hypergraphs. We then pro...
March 25, 2003
Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment...
August 11, 2020
Networks can describe the structure of a wide variety of complex systems by specifying which pairs of entities in the system are connected. While such pairwise representations are flexible, they are not necessarily appropriate when the fundamental interactions involve more than two entities at the same time. Pairwise representations nonetheless remain ubiquitous, because higher-order interactions are often not recorded explicitly in network data. Here, we introduce a Bayesian...
June 24, 2023
While network science has become an indispensable tool for studying complex systems, the conventional use of pairwise links often shows limitations in describing high-order interactions properly. Hypergraphs, where each edge can connect more than two nodes, have thus become a new paradigm in network science. Yet, we are still in lack of models linking network growth and hyperedge expansion, both of which are commonly observable in the real world. Here, we propose a generative...
July 23, 2007
Physicists study a wide variety of phenomena creating new interdisciplinary research fields by applying theories and methods originally developed in physics in order to solve problems in economics, social science, biology, medicine, technology, etc. In their turn, these different branches of science inspire the invention of new concepts in physics. A basic tool of analysis, in such a context, is the mathematical theory of complexity concerned with the study of complex systems...
January 10, 2023
Going beyond networks, to include higher-order interactions of arbitrary sizes, is a major step to better describe complex systems. In the resulting hypergraph representation, tools to identify structures and central nodes are scarce. We consider the decomposition of a hypergraph in hyper-cores, subsets of nodes connected by at least a certain number of hyperedges of at least a certain size. We show that this provides a fingerprint for data described by hypergraphs and sugges...
July 21, 2015
Complex network theory has been applied to solving practical problems from different domains. In this paper, we present a general framework for complex network applications. The keys of a successful application are a thorough understanding of the real system and a correct mapping of complex network theory to practical problems in the system. Despite of certain limitations discussed in this paper, complex network theory provides a foundation on which to develop powerful tools ...