June 22, 2015
Frequency dependent selection and demographic fluctuations play important roles in evolutionary and ecological processes. Under frequency dependent selection, the average fitness of the population may increase or decrease based on interactions between individuals within the population. This should be reflected in fluctuations of the population size even in constant environments. Here, we propose a stochastic model, which naturally combines these two evolutionary ingredients b...
March 1, 2022
In this letter, we deal with evolutionary game theoretic learning processes for population games on networks with dynamically evolving communities. Specifically, we propose a novel mathematical framework in which a deterministic, continuous-time replicator equation on a community network is coupled with a closed dynamic flow process between communities that is governed by an environmental feedback mechanism, resulting in co-evolutionary dynamics. Through a rigorous analysis o...
September 23, 2004
We discuss stochastic dynamics of populations of individuals playing games. Our models possess two evolutionarily stable strategies: an efficient one, where a population is in a state with the maximal payoff (fitness) and a risk-dominant one, where players are averse to risks. We assume that individuals play with randomly chosen opponents (they do not play against average strategies as in the standard replicator dynamics). We show that the long-run behavior of a population de...
September 29, 2004
We discuss similarities and differencies between systems of many interacting players maximizing their individual payoffs and particles minimizing their interaction energy. We analyze long-run behavior of stochastic dynamics of many interacting agents in spatial and adaptive population games. We review results concerning the effect of the number of players and the noise level on the stochastic stability of Nash equilibria. In particular, we present examples of games in which w...
April 3, 2014
Evolutionary game theory is a successful mathematical framework geared towards understanding the selective pressures that affect the evolution of the strategies of agents engaged in interactions with potential conflicts. While a mathematical treatment of the costs and benefits of decisions can predict the optimal strategy in simple settings, more realistic settings such as finite populations, non-vanishing mutations rates, stochastic decisions, communication between agents, a...
June 8, 2018
We study the evolutionary dynamics of games under environmental feedback using replicator equations for two interacting populations. One key feature is to consider jointly the co-evolution of the dynamic payoff matrices and the state of the environment: the payoff matrix varies with the changing environment and at the same time, the state of the environment is affected indirectly by the changing payoff matrix through the evolving population profiles. For such co-evolutionary ...
October 21, 2009
Demographic noise has profound effects on evolutionary and population dynamics, as well as on chemical reaction systems and models of epidemiology. Such noise is intrinsic and due to the discreteness of the dynamics in finite populations. We here show that similar noise-sustained trajectories arise in game dynamical learning, where the stochasticity has a different origin: agents sample a finite number of moves of their opponents in-between adaptation events. The limit of inf...
September 21, 2004
We construct two models of discrete-time replicator dynamics with time delay. In the social-type model, players imitate opponents taking into account average payoffs of games played some units of time ago. In the biological-type model, new players are born from parents who played in the past. We consider two-player games with two strategies and a unique mixed evolutionarily stable strategy. We show that in the first type of dynamics, it is asymptotically stable for small time...
March 19, 2016
The minimum-effort coordination game, having potentially important implications in both evolutionary biology and sociology, draws recently more attention for the fact that human behavior in this social dilemma is often inconsistent with the predictions of classic game theory. In the framework of classic game theory, any common effort level is a strict and trembling hand perfect Nash equilibrium, so that no desideratum is provided for selecting among them. Behavior experiments...
June 19, 2009
Evolutionary game dynamics describes the spreading of successful strategies in a population of reproducing individuals. Typically, the microscopic definition of strategy spreading is stochastic, such that the dynamics becomes deterministic only in infinitely large populations. Here, we introduce a new microscopic birth--death process that has a fully deterministic strong selection limit in well--mixed populations of any size. Additionally, under weak selection, from this new ...