February 29, 2024
Proteins are essential for life, and their structure determines their function. The protein secondary structure is formed by the folding of the protein primary structure, and the protein tertiary structure is formed by the bending and folding of the secondary structure. Therefore, the study of protein secondary structure is very helpful to the overall understanding of protein structure. Although the accuracy of protein secondary structure prediction has continuously improved ...
December 23, 2024
Deep learning is an advanced technology that relies on large-scale data and complex models for feature extraction and pattern recognition. It has been widely applied across various fields, including computer vision, natural language processing, and speech recognition. In recent years, deep learning has demonstrated significant potential in the realm of proteomics informatics, particularly in deciphering complex biological information. The introduction of this technology not o...
February 26, 2025
Deep learning has transformed protein design, enabling accurate structure prediction, sequence optimization, and de novo protein generation. Advances in single-chain protein structure prediction via AlphaFold2, RoseTTAFold, ESMFold, and others have achieved near-experimental accuracy, inspiring successive work extended to biomolecular complexes via AlphaFold Multimer, RoseTTAFold All-Atom, AlphaFold 3, Chai-1, Boltz-1 and others. Generative models such as ProtGPT2, ProteinMPN...
May 23, 2024
The effects of ligand binding on protein structures and their in vivo functions carry numerous implications for modern biomedical research and biotechnology development efforts such as drug discovery. Although several deep learning (DL) methods and benchmarks designed for protein-ligand docking have recently been introduced, to date no prior works have systematically studied the behavior of docking methods within the practical context of (1) using predicted (apo) protein stru...
February 17, 2025
Although machine learning has transformed protein structure prediction of folded protein ground states with remarkable accuracy, intrinsically disordered proteins and regions (IDPs/IDRs) are defined by diverse and dynamical structural ensembles that are predicted with low confidence by algorithms such as AlphaFold. We present a new machine learning method, IDPForge (Intrinsically Disordered Protein, FOlded and disordered Region GEnerator), that exploits a transformer protein ...
October 2, 2023
Deep learning has become a powerful tool in computational biology, revolutionising the analysis and interpretation of biological data over time. In our article review, we delve into various aspects of deep learning in computational biology. Specifically, we examine its history, advantages, and challenges. Our focus is on two primary applications: DNA sequence classification and prediction, as well as protein structure prediction from sequence data. Additionally, we provide in...
February 3, 2023
This paper demonstrates that language models are strong structure-based protein designers. We present LM-Design, a generic approach to reprogramming sequence-based protein language models (pLMs), that have learned massive sequential evolutionary knowledge from the universe of natural protein sequences, to acquire an immediate capability to design preferable protein sequences for given folds. We conduct a structural surgery on pLMs, where a lightweight structural adapter is im...
January 18, 2023
The goal of Protein Structure Prediction (PSP) problem is to predict a protein's 3D structure (confirmation) from its amino acid sequence. The problem has been a 'holy grail' of science since the Noble prize-winning work of Anfinsen demonstrated that protein conformation was determined by sequence. A recent and important step towards this goal was the development of AlphaFold2, currently the best PSP method. AlphaFold2 is probably the highest profile application of AI to scie...
October 18, 2024
In recent years, advances in artificial intelligence (AI) have transformed structural biology, particularly protein structure prediction. Though AI-based methods, such as AlphaFold (AF), often predict single conformations of proteins with high accuracy and confidence, predictions of alternative folds are often inaccurate, low-confidence, or simply not predicted at all. Here, we review three blind spots that alternative conformations reveal about AF-based protein structure pre...
March 8, 2024
Protein representation learning plays a crucial role in understanding the structure and function of proteins, which are essential biomolecules involved in various biological processes. In recent years, deep learning has emerged as a powerful tool for protein modeling due to its ability to learn complex patterns and representations from large-scale protein data. This comprehensive survey aims to provide an overview of the recent advances in deep learning techniques applied to ...