September 29, 2019
In recent times, machine learning (ML) and artificial intelligence (AI) based systems have evolved and scaled across different industries such as finance, retail, insurance, energy utilities, etc. Among other things, they have been used to predict patterns of customer behavior, to generate pricing models, and to predict the return on investments. But the successes in deploying machine learning models at scale in those industries have not translated into the healthcare setting...
August 10, 2020
Deep learning models have achieved expert-level performance in healthcare with an exclusive focus on training accurate models. However, in many clinical environments such as intensive care unit (ICU), real-time model serving is equally if not more important than accuracy, because in ICU patient care is simultaneously more urgent and more expensive. Clinical decisions and their timeliness, therefore, directly affect both the patient outcome and the cost of care. To make timely...
April 16, 2021
Patient flow analysis can be studied from a clinical and or operational perspective using simulation. Traditional statistical methods such as stochastic distribution methods have been used to construct patient flow simulation submodels such as patient inflow, Length of Stay (LoS), Cost of Treatment (CoT) and Clinical Pathway (CP) models. However, patient inflow demonstrates seasonality, trend and variation over time. LoS, CoT and CP are significantly determined by attributes ...
May 15, 2015
A look at how big data is transforming telemedicine to provide better care by tapping into a larger source of patient information. Telemedicine will have a profound impact on patient care, increase access and quality, and represent an opportunity to keep health care costs down. Data generated by smart devices will enable the real-time monitoring of chronic diseases, allowing optimal dosage of drugs and improve patient outcomes.
June 1, 2018
Modern electronic health records (EHRs) provide data to answer clinically meaningful questions. The growing data in EHRs makes healthcare ripe for the use of machine learning. However, learning in a clinical setting presents unique challenges that complicate the use of common machine learning methodologies. For example, diseases in EHRs are poorly labeled, conditions can encompass multiple underlying endotypes, and healthy individuals are underrepresented. This article serves...
May 4, 2024
The use of machine learning in Healthcare has the potential to improve patient outcomes as well as broaden the reach and affordability of Healthcare. The history of other application areas indicates that strong benchmarks are essential for the development of intelligent systems. We present Personal Health Interfaces Leveraging HUman-MAchine Natural interactions (PhilHumans), a holistic suite of benchmarks for machine learning across different Healthcare settings - talk therap...
June 6, 2019
Deep learning, an area of machine learning, is set to revolutionize patient care. But it is not yet part of standard of care, especially when it comes to individual patient care. In fact, it is unclear to what extent data-driven techniques are being used to support clinical decision making (CDS). Heretofore, there has not been a review of ways in which research in machine learning and other types of data-driven techniques can contribute effectively to clinical care and the ty...
June 26, 2016
We provide an overview of the recent trends towards digitalization and large scale data analytics in healthcare. It is expected that these trends are instrumental in the dramatic changes in the way healthcare will be organized in the future. We discuss the recent political initiatives designed to shift care delivery processes from paper to electronic, with the goals of more effective treatments with better outcomes; cost pressure is a major driver of innovation. We describe n...
April 1, 2023
The healthcare sector is an important pillar of every community, numerous research studies have been carried out in this context to optimize medical processes and improve care quality and facilitate patient management. In this article we have analyzed and examined different works concerning the exploitation of the most recent technologies such as big data, artificial intelligence, machine learning, and deep learning for the improvement of health care, which enabled us to prop...
December 13, 2021
Healthcare AI holds the potential to increase patient safety, augment efficiency and improve patient outcomes, yet research is often limited by data access, cohort curation, and tooling for analysis. Collection and translation of electronic health record data, live data, and real-time high resolution device data can be challenging and time-consuming. The development of real-world AI tools requires overcoming challenges in data acquisition, scarce hospital resources and high n...