January 23, 2023
Training time budget and size of the dataset are among the factors affecting the performance of a Deep Neural Network (DNN). This paper shows that Neural Architecture Search (NAS), Hyper Parameters Optimization (HPO), and Data Augmentation help DNNs perform much better while these two factors are limited. However, searching for an optimal architecture and the best hyperparameter values besides a good combination of data augmentation techniques under low resources requires man...
June 13, 2022
Common Neural Architecture Search methods generate large amounts of candidate architectures that need training in order to assess their performance and find an optimal architecture. To minimize the search time we use different performance estimation strategies. The effectiveness of such strategies varies in terms of accuracy and fit and query time. This study proposes a new method, EmProx Score (Embedding Proximity Score). Similar to Neural Architecture Optimization (NAO), th...
May 18, 2022
Since the deep learning model is highly dependent on hyperparameters, hyperparameter optimization is essential in developing deep learning model-based applications, even if it takes a long time. As service development using deep learning models has gradually become competitive, many developers highly demand rapid hyperparameter optimization algorithms. In order to keep pace with the needs of faster hyperparameter optimization algorithms, researchers are focusing on improving ...
March 8, 2024
We present ECToNAS, a cost-efficient evolutionary cross-topology neural architecture search algorithm that does not require any pre-trained meta controllers. Our framework is able to select suitable network architectures for different tasks and hyperparameter settings, independently performing cross-topology optimisation where required. It is a hybrid approach that fuses training and topology optimisation together into one lightweight, resource-friendly process. We demonstrat...
May 11, 2022
Advanced deep neural networks (DNNs), designed by either human or AutoML algorithms, are growing increasingly complex. Diverse operations are connected by complicated connectivity patterns, e.g., various types of skip connections. Those topological compositions are empirically effective and observed to smooth the loss landscape and facilitate the gradient flow in general. However, it remains elusive to derive any principled understanding of their effects on the DNN capacity o...
June 19, 2024
To achieve high accuracy, convolutional neural networks (CNNs) are increasingly growing in complexity and diversity in layer types and topologies. This makes it very challenging to efficiently deploy such networks on custom processor architectures for resource-scarce edge devices. Existing mapping exploration frameworks enable searching for the optimal execution schedules or hardware mappings of individual network layers, by optimizing each layer's spatial (dataflow paralleli...
January 30, 2022
Spiking neural networks (SNNs) that mimic information transmission in the brain can energy-efficiently process spatio-temporal information through discrete and sparse spikes, thereby receiving considerable attention. To improve accuracy and energy efficiency of SNNs, most previous studies have focused solely on training methods, and the effect of architecture has rarely been studied. We investigate the design choices used in the previous studies in terms of the accuracy and n...
December 10, 2023
We develop an automated pipeline to streamline neural architecture codesign for fast, real-time Bragg peak analysis in high-energy diffraction microscopy. Traditional approaches, notably pseudo-Voigt fitting, demand significant computational resources, prompting interest in deep learning models for more efficient solutions. Our method employs neural architecture search and AutoML to enhance these models, including hardware costs, leading to the discovery of more hardware-effi...
July 26, 2022
Trained ML models are commonly embedded in optimization problems. In many cases, this leads to large-scale NLPs that are difficult to solve to global optimality. While ML models frequently lead to large problems, they also exhibit homogeneous structures and repeating patterns (e.g., layers in ANNs). Thus, specialized solution strategies can be used for large problem classes. Recently, there have been some promising works proposing specialized reformulations using mixed-intege...
May 11, 2024
We propose a generative flow-induced neural architecture search algorithm. The proposed approach devices simple feed-forward neural networks to learn stochastic policies to generate sequences of architecture hyperparameters such that the generated states are in proportion with the reward from the terminal state. We demonstrate the efficacy of the proposed search algorithm on the wavelet neural operator (WNO), where we learn a policy to generate a sequence of hyperparameters l...