ID: 0707.1963

Kauffman Boolean model in undirected scale free networks

July 13, 2007

View on ArXiv
Piotr Fronczak, Agata Fronczak, Janusz A. Holyst
Condensed Matter
Disordered Systems and Neura...
Statistical Mechanics

We investigate analytically and numerically the critical line in undirected random Boolean networks with arbitrary degree distributions, including scale-free topology of connections $P(k)\sim k^{-\gamma}$. We show that in infinite scale-free networks the transition between frozen and chaotic phase occurs for $3<\gamma < 3.5$. The observation is interesting for two reasons. First, since most of critical phenomena in scale-free networks reveal their non-trivial character for $\gamma<3$, the position of the critical line in Kauffman model seems to be an important exception from the rule. Second, since gene regulatory networks are characterized by scale-free topology with $\gamma<3$, the observation that in finite-size networks the mentioned transition moves towards smaller $\gamma$ is an argument for Kauffman model as a good starting point to model real systems. We also explain that the unattainability of the critical line in numerical simulations of classical random graphs is due to percolation phenomena.

Similar papers 1

Critical line in undirected Kauffman boolean networks - the role of percolation

December 6, 2007

91% Match
Piotr Fronczak, Agata Fronczak
Disordered Systems and Neura...
Statistical Mechanics

We show that to correctly describe the position of the critical line in the Kauffman random boolean networks one must take into account percolation phenomena underlying the process of damage spreading. For this reason, since the issue of percolation transition is much simpler in random undirected networks, than in the directed ones, we study the Kauffman model in undirected networks. We derive the mean field formula for the critical line in the giant component of these networ...

Find SimilarView on arXiv

Boolean Dynamics of Kauffman Models with a Scale-Free Network

October 17, 2005

90% Match
Kazumoto Iguchi, Shuichi Kinoshita, Hiroaki S. Yamada
Disordered Systems and Neura...

We study the Boolean dynamics of the "quenched" Kauffman models with a directed scale-free network, comparing with that of the original directed random Kauffman networks and that of the directed exponential-fluctuation networks. We have numerically investigated the distributions of the state cycle lengths and its changes as the network size $N$ and the average degree $<k>$ of nodes increase. In the relatively small network ($N \sim 150$), the median, the mean value and the st...

Find SimilarView on arXiv

Scaling in a general class of critical random Boolean networks

June 23, 2006

89% Match
Tamara Mihaljev, Barbara Drossel
Disordered Systems and Neura...
Statistical Mechanics

We derive analytically the scaling behavior in the thermodynamic limit of the number of nonfrozen and relevant nodes in the most general class of critical Kauffman networks for any number of inputs per node, and for any choice of the probability distribution for the Boolean functions. By defining and analyzing a stochastic process that determines the frozen core we can prove that the mean number of nonfrozen nodes in any critical network with more than one input per node scal...

Find SimilarView on arXiv

Critical Boolean networks with scale-free in-degree distribution

January 4, 2009

88% Match
Barbara Drossel, Florian Greil
Disordered Systems and Neura...
Statistical Mechanics

We investigate analytically and numerically the dynamical properties of critical Boolean networks with power-law in-degree distributions. When the exponent of the in-degree distribution is larger than 3, we obtain results equivalent to those obtained for networks with fixed in-degree, e.g., the number of the non-frozen nodes scales as $N^{2/3}$ with the system size $N$. When the exponent of the distribution is between 2 and 3, the number of the non-frozen nodes increases as $...

Find SimilarView on arXiv

Scaling in critical random Boolean networks

June 30, 2005

88% Match
Viktor Kaufman, Tamara Mihaljev, Barbara Drossel
Statistical Mechanics
Disordered Systems and Neura...

We derive mostly analytically the scaling behavior of the number of nonfrozen and relevant nodes in critical Kauffman networks (with two inputs per node) in the thermodynamic limit. By defining and analyzing a stochastic process that determines the frozen core we can prove that the mean number of nonfrozen nodes scales with the network size N as N^{2/3}, with only N^{1/3} nonfrozen nodes having two nonfrozen inputs. We also show the probability distributions for the numbers o...

Find SimilarView on arXiv

Broad edge of chaos in strongly heterogeneous Boolean networks

May 30, 2006

88% Match
Deok-Sun Lee, Heiko Rieger
Statistical Mechanics

The dynamic stability of the Boolean networks representing a model for the gene transcriptional regulation (Kauffman model) is studied by calculating analytically and numerically the Hamming distance between two evolving configurations. This turns out to behave in a universal way close to the phase boundary only for in-degree distributions with a finite second moment. In-degree distributions of the form $P_d(k)\sim k^{-\gamma}$ with $2<\gamma<3$, thus having a diverging secon...

Find SimilarView on arXiv

Number and length of attractors in a critical Kauffman model with connectivity one

October 22, 2004

87% Match
Barbara Drossel, Tamara Mihaljev, Florian Greil
Disordered Systems and Neura...
Statistical Mechanics

The Kauffman model describes a system of randomly connected nodes with dynamics based on Boolean update functions. Though it is a simple model, it exhibits very complex behavior for "critical" parameter values at the boundary between a frozen and a disordered phase, and is therefore used for studies of real network problems. We prove here that the mean number and mean length of attractors in critical random Boolean networks with connectivity one both increase faster than any ...

Find SimilarView on arXiv

Canalizing Kauffman networks: non-ergodicity and its effect on their critical behavior

April 27, 2005

87% Match
Andre A. Moreira, Luis A. N. Amaral
Disordered Systems and Neura...

Boolean Networks have been used to study numerous phenomena, including gene regulation, neural networks, social interactions, and biological evolution. Here, we propose a general method for determining the critical behavior of Boolean systems built from arbitrary ensembles of Boolean functions. In particular, we solve the critical condition for systems of units operating according to canalizing functions and present strong numerical evidence that our approach correctly predic...

Find SimilarView on arXiv

Rugged Fitness Landscapes of Kauffman Model with a Scale-Free Network

July 3, 2005

87% Match
Kazumoto Iguchi, Shuichi Kinoshita, Hiroaki Yamada
Statistical Mechanics
Disordered Systems and Neura...

We study the nature of fitness landscapes of 'quenched' Kauffman's Boolean model with a scale-free network. We have numerically calculated the rugged fitness landscapes, the distributions, its tails, and the correlation between the fitness of local optima and their Hamming distance from the highest optimum found, respectively. We have found that (a) there is an interesting difference between the random and the scale-free networks such that the statistics of the rugged fitness...

Find SimilarView on arXiv

The Modular Structure of Kauffman Networks

August 28, 1997

87% Match
U. Bastolla, G. Parisi
Disordered Systems and Neura...

This is the second paper of a series of two about the structural properties that influence the asymptotic dynamics of Random Boolean Networks. Here we study the functionally independent clusters in which the relevant elements, introduced and studied in our first paper, are subdivided. We show that the phase transition in Random Boolean Networks can also be described as a percolation transition. The statistical properties of the clusters of relevant elements (that we call modu...

Find SimilarView on arXiv