July 18, 2007
Similar papers 4
December 3, 2007
For every positive integer h, the representation function of order h associated to a subset A of the integers or, more generally, of any group or semigroup X, counts the number of ways an element of X can be written as the sum (or product, if X is nonabelian) of h not necessarily distinct elements of X. The direct problem for representation functions in additive number theory begins with a subset A of X and seeks to understand its representation functions. The inverse problem...
March 19, 2015
We improve a result of Solymosi on sum-products in R, namely, we prove that max{|A+A|,|AA|}\gg |A|^{4/3+c}, where c>0 is an absolute constant. New lower bounds for sums of sets with small product set are found. Previous results are improved effectively for sets A from R with |AA| \le |A|^{4/3}.
September 27, 2017
Let $G\cong \mathbb Z/m_1\mathbb Z\times\ldots\times \mathbb Z/m_r\mathbb Z$ be a finite abelian group with $m_1\mid\ldots\mid m_r=\exp(G)$. The Kemperman Structure Theorem characterizes all subsets $A,\,B\subseteq G$ satisfying $|A+B|<|A|+|B|$ and has been extended to cover the case when $|A+B|\leq |A|+|B|$. Utilizing these results, we provide a precise structural description of all finite subsets $A\subseteq G$ with $|nA|\leq (|A|+1)n-3$ when $n\geq 3$ (also when $G$ is inf...
January 16, 2016
We compare the size of the difference set $A-A$ to that of the set $kA$ of $k$-fold sums. We show the existence of sets such that $|kA| < |A-A|^{a_k}$ with $a_k<1$.
December 3, 2012
In this article we survey some of the recent developments in the structure theory of set addition.
February 20, 2009
Let $A$ and $B$ be finite subsets of $\mathbb{C}$ such that $|B|=C|A|$. We show the following variant of the sum product phenomenon: If $|AB|<\alpha|A|$ and $\alpha \ll \log |A|$, then $|kA+lB|\gg |A|^k|B|^l$. This is an application of a result of Evertse, Schlickewei, and Schmidt on linear equations with variables taking values in multiplicative groups of finite rank, in combination with an earlier theorem of Ruzsa about sumsets in $\mathbb{R}^d$. As an application of the ca...
April 12, 2013
Let $A$ and $B$ be additive sets of $\mathbb{Z}_{2k}$, where $A$ has cardinality $k$ and $B=v.\complement A$ with $v\in\mathbb{Z}_{2k}^{\times}$. In this note some bounds for the cardinality of $A+B$ are obtained, using four different approaches. We also prove that in a special case the bound is not sharp and we can recover the whole group as a sumset.
December 1, 2017
We prove new results on additive properties of finite sets $A$ with small multiplicative doubling $|AA|\leq M|A|$ in the category of real/complex sets as well as multiplicative subgroups in the prime residue field. The improvements are based on new combinatorial lemmata, which may be of independent interest. Our main results are the inequality $$ |A-A|^3|AA|^5 \gtrsim |A|^{10}, $$ over the reals, "redistributing" the exponents in the textbook Elekes sum-product inequality a...
May 21, 2017
This text contains over three hundred specific open questions on various topics in additive combinatorics, each placed in context by reviewing all relevant results. While the primary purpose is to provide an ample supply of problems for student research, it is hopefully also useful for a wider audience. It is the author's intention to keep the material current, thus all feedback and updates are greatly appreciated.
June 27, 2008
Sharpening (a particular case of) a result of Szemeredi and Vu and extending earlier results of Sarkozy and ourselves, we find, subject to some technical restrictions, a sharp threshold for the number of integer sets needed for their sumset to contain a block of consecutive integers of length, comparable with the lengths of the set summands. A corollary of our main result is as follows. Let $k,l\ge 1$ and $n\ge 3$ be integers, and suppose that $A_1,...,A_k\subset[0,l]$ are ...