November 23, 2007
Similar papers 5
January 20, 2014
Using a formalism based on the spectral decomposition of the replicated transfer matrix for disordered Ising models, we obtain several results that apply both to isolated one-dimensional systems and to locally tree-like graph and factor graph (p-spin) ensembles. We present exact analytical expressions, which can be efficiently approximated numerically, for many types of correlation functions and for the average free energies of open and closed finite chains. All the results a...
August 2, 1995
We discuss the utility of analytical and numerical investigation of spin models, in particular spin glasses, on ordinary ``thin'' random graphs (in effect Feynman diagrams) using methods borrowed from the ``fat'' graphs of two dimensional gravity. We highlight the similarity with Bethe lattice calculations and the advantages of the thin graph approach both analytically and numerically for investigating mean field results.
August 13, 1998
The thermodynamics of the infinite-range Ising spin glass with p-spin interactions in the presence of an external magnetic field h is investigated analytically using the replica method. We give emphasis to the analysis of the transition between the replica symmetric and the one-step replica symmetry breaking regimes. In particular, we derive analytical conditions for the onset of the continuous transition, as well as for the location of the tricritical point at which the tran...
September 2, 1998
Within the Bethe- Peierls method the for short- ranged Ising spin glass, recently formulated by Serva and Paladin, the equation for the spin glass parameter function near the transition to the paramagnetic phase has been carried out. The form of this equation is qualitatively similar to that for Sherrington- Kirpatrick model, but quantitatively the order parametr function depends of the dimension d of the system. In the case d tends to infinity one obtains well known Parisi s...
June 5, 2001
The phase diagram of the random field Ising model on the Bethe lattice with a symmetric dichotomous random field is closely investigated with respect to the transition between the ferromagnetic and paramagnetic regime. Refining arguments of Bleher, Ruiz and Zagrebnov [J. Stat. Phys. 93, 33 (1998)] an exact upper bound for the existence of a unique paramagnetic phase is found which considerably improves the earlier results. Several numerical estimates of transition lines betwe...
April 18, 2023
Most real-world networks are endowed with the small-world property, by means of which the maximal distance between any two of their nodes scales logarithmically rather than linearly with their size. The evidence sparkled a wealth of studies trying to reveal possible mechanisms through which the pairwise interactions amongst the units of a network are structured in a way to determine such observed regularity. Here we show that smallworldness occurs also when interactions are o...
July 13, 2022
We investigate the replica symmetry broken (RSB) phase of spin glass (SG) models in a random field defined on Bethe lattices at zero temperature. From the properties of the RSB solution we deduce a closed equation for the extreme values of the cavity fields. This equation turns out not to depend on the parameters defining the RSB, and it predicts that the spontaneous RSB does not take place homogeneously on the whole system. Indeed, there exist spins having the same effective...
July 23, 2012
We provide an explicit formula for the limiting free energy density (log-partition function divided by the number of vertices) for ferromagnetic Potts models on uniformly sparse graph sequences converging locally to the d-regular tree for d even, covering all temperature regimes. This formula coincides with the Bethe free energy functional evaluated at a suitable fixed point of the belief propagation recursion on the d-regular tree, the so-called replica symmetric solution. F...
December 30, 2022
In this paper, we study the fluctuation problems at high temperature in the general mixed $p$-spin glass models under the weak external field assumption: $h= \rho N^{-\alpha}, \rho>0, \alpha \in [1/4,\infty]$. By extending the cluster expansion approach to this generic setting, we convert the fluctuation problem as a hypergraph counting problem and thus obtain a new multiple-transition phenomenon. A by-product of our results is an explicit characterization of the critical inv...
September 16, 2018
The statistical mechanics method is developed for determination of generating function of like-sign spin clusters' size distribution in Ising model as modification of Ising-Potts model by K. K. Murata (1979). It is applied to the ferromagnetic Ising model on Bethe lattice. The analytical results for the field-temperature percolation phase diagram of + spin clusters and their size distribution are obtained. The last appears to be proportional to that of the classical non-corre...