February 1, 2008
Similar papers 2
October 8, 2024
Simultaneous graphical dynamic linear models (SGDLMs) provide advances in flexibility, parsimony and scalability of multivariate time series analysis, with proven utility in forecasting. Core theoretical aspects of such models are developed, including new results linking dynamic graphical and latent factor models. Methodological developments extend existing Bayesian sequential analyses for model marginal likelihood evaluation and counterfactual forecasting. The latter, involv...
September 29, 2015
Generalized autoregressive moving average (GARMA) models are a class of models that was developed for extending the univariate Gaussian ARMA time series model to a flexible observation-driven model for non-Gaussian time series data. This work presents Bayesian approach for GARMA models with Poisson, binomial and negative binomial distributions. A simulation study was carried out to investigate the performance of Bayesian estimation and Bayesian model selection criteria. Also ...
October 18, 2007
The relationship between short-term exposure to air pollution and mortality or morbidity has been the subject of much recent research, in which the standard method of analysis uses Poisson linear or additive models. In this paper we use a Bayesian dynamic generalised linear model (DGLM) to estimate this relationship, which allows the standard linear or additive model to be extended in two ways: (i) the long-term trend and temporal correlation present in the health data can be...
December 7, 2022
The Bayesian statistical paradigm provides a principled and coherent approach to probabilistic forecasting. Uncertainty about all unknowns that characterize any forecasting problem -- model, parameters, latent states -- is able to be quantified explicitly, and factored into the forecast distribution via the process of integration or averaging. Allied with the elegance of the method, Bayesian forecasting is now underpinned by the burgeoning field of Bayesian computation, which...
October 27, 2021
Dynamic Linear Models (DLMs) are commonly employed for time series analysis due to their versatile structure, simple recursive updating, ability to handle missing data, and probabilistic forecasting. However, the options for count time series are limited: Gaussian DLMs require continuous data, while Poisson-based alternatives often lack sufficient modeling flexibility. We introduce a novel semiparametric methodology for count time series by warping a Gaussian DLM. The warping...
July 9, 2011
Modelling outliers and structural breaks in dynamic linear models with a novel use of a heavy tailed prior for the variances: An alternative to the Inverted Gamma
February 24, 2025
Multivariate time series (MTS) data often include a heterogeneous mix of non-Gaussian distributional features (asymmetry, multimodality, heavy tails) and data types (continuous and discrete variables). Traditional MTS methods based on convenient parametric distributions are typically ill-equipped to model this heterogeneity. Copula models provide an appealing alternative, but present significant obstacles for fully Bayesian inference and probabilistic forecasting. To overcome...
December 6, 2016
State space modelling is an efficient and flexible method for statistical inference of a broad class of time series and other data. This paper describes an R package KFAS for state space modelling with the observations from an exponential family, namely Gaussian, Poisson, binomial, negative binomial and gamma distributions. After introducing the basic theory behind Gaussian and non-Gaussian state space models, an illustrative example of Poisson time series forecasting is prov...
November 1, 2017
A new class of models, named dynamic quantile linear models, is presented. It combines dynamic linear models with distribution free quantile regression producing a robust statistical method. Bayesian inference for dynamic quantile linear models can be performed using an efficient Markov chain Monte Carlo algorithm. A fast sequential procedure suited for high-dimensional predictive modeling applications with massive data, in which the generating process is itself changing over...
June 3, 2016
This paper develops asymptotic theory for estimation of parameters in regression models for binomial response time series where serial dependence is present through a latent process. Use of generalized linear model (GLM) estimating equations leads to asymptotically biased estimates of regression coefficients for binomial responses. An alternative is to use marginal likelihood, in which the variance of the latent process but not the serial dependence is accounted for. In pract...