February 28, 2008
We discuss how to significantly reduce leakage errors in topological quantum computation by introducing an irrelevant error in phase, using the construction of a CNOT gate in the Fibonacci anyon model as a concrete example. To be specific, we construct a functional braid in a six-anyon Hilbert space that exchanges two neighboring anyons while conserving the encoded quantum information. The leakage error is $\sim$$10^{-10}$ for a braid of $\sim$100 interchanges of anyons. Applying the braid greatly reduces the leakage error in the construction of generic controlled-rotation gates.
Similar papers 1
February 3, 2018
Fibonacci anyons are attractive for use in topological quantum computation because any unitary transformation of their state space can be approximated arbitrarily accurately by braiding. However there is no known braid that entangles two qubits without leaving the space spanned by the two qubits. In other words, there is no known "leakage-free" entangling gate made by braiding. In this paper, we provide a remedy to this problem by supplementing braiding with measurement opera...
December 12, 2008
In a topological quantum computer, braids of non-Abelian anyons in a (2+1)-dimensional space-time form quantum gates, whose fault tolerance relies on the topological, rather than geometric, properties of the braids. Here we propose to create and exploit redundant geometric degrees of freedom to improve the theoretical accuracy of topological single- and two-qubit quantum gates. We demonstrate the power of the idea using explicit constructions in the Fibonacci model. We compar...
August 8, 2020
Topological quantum computation is an implementation of a quantum computer in a way that radically reduces decoherence. Topological qubits are encoded in the topological evolution of two-dimensional quasi-particles called anyons and universal set of quantum gates can be constructed by braiding these anyons yielding to a topologically protected circuit model. In the present study we remind the basics of this emerging quantum computation scheme and illustrate how a topological ...
February 24, 2011
We examine how best to design qubits for use in topological quantum computation. These qubits are topological Hilbert spaces associated with small groups of anyons. Op- erations are performed on these by exchanging the anyons. One might argue that, in order to have as many simple single qubit operations as possible, the number of anyons per group should be maximized. However, we show that there is a maximal number of particles per qubit, namely 4, and more generally a maximal...
October 15, 2013
In a topological quantum computer, universality is achieved by braiding and quantum information is natively protected from small local errors. We address the problem of compiling single-qubit quantum operations into braid representations for non-abelian quasiparticles described by the Fibonacci anyon model. We develop a probabilistically polynomial algorithm that outputs a braid pattern to approximate a given single-qubit unitary to a desired precision. We also classify the s...
August 13, 2024
We investigate the topological quantum compilation of two-qubit operations within a system of Fibonacci anyons. Our primary goal is to generate gates that are approximately leakage-free and equivalent to the controlled-NOT (CNOT) gate up to single-qubit operations. These gates belong to the local equivalence class [CNOT]. Additionally, we explore which local equivalence classes of two-qubit operations can be naturally generated by braiding Fibonacci anyons. We discovered that...
November 29, 2023
A method, termed controlled-injection, is proposed for compiling three-qubit controlled gates within the non-abelian Fibonacci anyon model. Building on single-qubit compilation techniques with three Fibonacci anyons, the approach showcases enhanced accuracy and reduced braid length compared to the conventional decomposition method for the controlled three-qubit gates. This method necessitates only four two-qubit gates for decomposition, a notable reduction from the convention...
February 17, 2018
Topological quantum computers promise a fault tolerant means to perform quantum computation. Topological quantum computers use particles with exotic exchange statistics called non-Abelian anyons, and the simplest anyon model which allows for universal quantum computation by particle exchange or braiding alone is the Fibonacci anyon model. One classically hard problem that can be solved efficiently using quantum computation is finding the value of the Jones polynomial of knots...
January 21, 2016
Topological phases of matter are a potential platform for the storage and processing of quantum information with intrinsic error rates that decrease exponentially with inverse temperature and with the length scales of the system, such as the distance between quasiparticles. However, it is less well-understood how error rates depend on the speed with which non-Abelian quasiparticles are braided. In general, diabatic corrections to the holonomy or Berry's matrix vanish at least...
July 4, 2023
We present a systematic numerical method to compute the elementary braiding operations for topological quantum computation (TQC). Braiding non-Abelian anyons is a crucial technique in TQC, offering a topologically protected implementation of quantum gates. However, obtaining matrix representations for braid generators can be challenging, especially for systems with numerous anyons or complex fusion patterns. Our proposed method addresses this challenge, allowing for the inclu...