September 2, 2008
Small, non-coding RNAs (sRNAs) play important roles as genetic regulators in prokaryotes. sRNAs act post-transcriptionally via complementary pairing with target mRNAs to regulate protein expression. We use a quantitative approach to compare and contrast sRNAs with conventional transcription factors (TFs) to better understand the advantages of each form of regulation. In particular, we calculate the steady-state behavior, noise properties, frequency-dependent gain (amplification), and dynamical response to large input signals of both forms of regulation. While the mean steady-state behavior of sRNA-regulated proteins exhibits a distinctive tunable threshold-linear behavior, our analysis shows that transcriptional bursting leads to significantly higher intrinsic noise in sRNA-based regulation than in TF-based regulation in a large range of expression levels and limits the ability of sRNAs to perform quantitative signaling. Nonetheless, we find that sRNAs are better than TFs at filtering noise in input signals. Additionally, we find that sRNAs allow cells to respond rapidly to large changes in input signals. These features suggest a niche for sRNAs in allowing cells to transition quickly yet reliably between distinct states. This functional niche is consistent with the widespread appearance of sRNAs in stress-response and quasi-developmental networks in prokaryotes.
Similar papers 1
October 10, 2021
Gene expression is a fundamental process in a living system. The small RNAs (sRNAs) is widely observed as a global regulator in gene expression. The inherent nonlinearity in this regulatory process together with the bursty production of messenger RNA (mRNA), sRNA and protein make the exact solution for this stochastic process intractable. This is particularly the case when quantifying the protein noise level, which has great impact on multiple cellular processes. Here we prop...
January 18, 2019
A feed-forward loop (FFL) is a common gene-regulatory motif in which usually the upstream regulator is a protein, a transcription factor, that regulates the expression of the target protein in two parallel pathways. Here, we study a distinct sRNA-driven FFL (sFFL) discovered recently in Salmonella enterica. Unlike previously studied transcriptional FFLs (tFFL) and sRNA-mediated FFLs (smFFL), here the upstream regulator is an sRNA that activates the target protein and its tran...
November 12, 2012
MicroRNAs are small noncoding RNAs that regulate genes post-transciptionally by binding and degrading target eukaryotic mRNAs. We use a quantitative model to study gene regulation by inhibitory microRNAs and compare it to gene regulation by prokaryotic small non-coding RNAs (sRNAs). Our model uses a combination of analytic techniques as well as computational simulations to calculate the mean-expression and noise profiles of genes regulated by both microRNAs and sRNAs. We find...
November 28, 2008
Non-coding RNAs are crucial regulators of gene expression in prokaryotes and eukaryotes, but it remains poorly understood how they affect the dynamics of transcriptional networks. We analyzed the temporal characteristics of the cyanobacterial iron stress response by mathematical modeling and quantitative experimental analyses, and focused on the role of a recently discovered small non-coding RNA, IsrR. We found that IsrR is responsible for a pronounced delay in the accumulati...
October 9, 2009
Regulation of mRNA decay is a critical component of global cellular adaptation to changing environments. The corresponding changes in mRNA lifetimes can be coordinated with changes in mRNA transcription rates to fine-tune gene expression. Current approaches for measuring mRNA lifetimes can give rise to secondary effects due to transcription inhibition and require separate experiments to estimate changes in mRNA transcription rates. Here, we propose an approach for simultaneou...
March 24, 2017
Small non-coding RNAs can exert significant regulatory activity on gene expression in bacteria. In recent years, substantial progress has been made in understanding bacterial gene expression by sRNAs. However, recent findings that demonstrate that families of mRNAs show non-trivial sub-cellular distributions raise the question of how localization may affect the regulatory activity of sRNAs. Here we address this question within a simple mathematical model. We show that the non...
April 11, 2016
The intrinsic stochasticity of gene expression is usually mitigated in higher eukaryotes by post-transcriptional regulation channels that stabilise the output layer, most notably protein levels. The discovery of small non-coding RNAs (miRNAs) in specific motifs of the genetic regulatory network has led to identifying noise buffering as the possible key function they exert in regulation. Recent in vitro} and in silico studies have corroborated this hypothesis. It is however al...
January 31, 2011
A wealth of new research has highlighted the critical roles of small RNAs (sRNAs) in diverse processes such as quorum sensing and cellular responses to stress. The pathways controlling these processes often have a central motif comprising of a master regulator protein whose expression is controlled by multiple sRNAs. However, the regulation of stochastic gene expression of a single target gene by multiple sRNAs is currently not well understood. To address this issue, we analy...
April 2, 2010
MicroRNAs are endogenous non-coding RNAs which negatively regulate the expression of protein-coding genes in plants and animals. They are known to play an important role in several biological processes and, together with transcription factors, form a complex and highly interconnected regulatory network. Looking at the structure of this network it is possible to recognize a few overrepresented motifs which are expected to perform important elementary regulatory functions. Amon...
February 15, 2018
In this paper, we study through mathematical modelling the combined effect of transcriptional and translational regulation by proteins and small noncoding RNAs (sRNA) in a genetic feedback motif that has an important role in the survival of E.coli under stress associated with oxygen and energy availability. We show that subtle changes in this motif can bring in drastically different effects on the gene expression. In particular, we show that a threshold response in the gene e...