November 21, 2008
In this note we describe a new method of counting the number of unordered factorizations of a natural number by means of a generating function and a recurrence relation arising from it, which improves an earlier result in this direction.
Similar papers 1
The number of ordered factorizations and the number of recursive divisors are two related arithmetic functions that are recursively defined. But it is hard to construct explicit representations of these functions. Taking advantage of their recursive definition and a geometric interpretation, we derive three closed-form expressions for them both. These expressions shed light on the structure of these functions and their number-theoretic properties. Surprisingly, both functions...
December 1, 2014
As a well-known enumerative problem, the number of solutions of the equation $m=m_1+...+m_k$ with $m_1\leqslant...\leqslant m_k$ in positive integers is $\Pi(m,k)=\sum_{i=0}^k\Pi(m-k,i)$ and $\Pi$ is called the additive partition function. In this paper, we give a recursive formula for the so-called multiplicative partition function $\mu_1(m,k):=$ the number of solutions of the equation $m=m_1... m_k$ with $m_1\leqslant...\leqslant m_k$ in positive integers. In particular, us...
August 23, 2020
We study the number of factorizations of a positive integer, where the parts of the factorization are of l different colors (or kinds). Recursive or explicit formulas are derived for the case of unordered and ordered, distinct and non-distinct factorizations with at most and exactly l colors.
July 17, 2019
We derive new formulas for the number of unordered (distinct) factorizations with $k$ parts of a positive integer $n$ as sums over the partitions of $k$ and an auxiliary function, the number of partitions of the prime exponents of $n$, where the parts have a specific number of colors. As a consequence, some new relations between partitions, Bell numbers and Stirling number of the second kind are derived. We also derive a recursive formula for the number of unordered factoriza...
October 16, 2016
We give an overview of combinatoric properties of the number of ordered $k$-factorizations $f_k(n,l)$ of an integer, where every factor is greater or equal to $l$. We show that for a large number $k$ of factors, the value of the cumulative sum $F_k(x,l)=\sum\nolimits_{n\leq x} f_k(n,l)$ is a polynomial in $\lfloor \log_l x \rfloor$ and give explicit expressions for the degree and the coefficients of this polynomial. An average order of the number of ordered factorizations for...
April 27, 2010
In this note we will give various exact formulas for functions on integer partitions including the functions $p(n)$ and $p(n,k)$ of the number of partitions of $n$ and the number of such partitions into exactly $k$ parts respectively. For instance, we shall prove that $$ p(n) = \sum_{d|n} \sum_{k=1}^{d} \sum_{i_0 =1}^{\lfloor d/k \rfloor} \sum_{i_1 =i_0}^{\lfloor\frac{d- i_0}{k-1} \rfloor} \sum_{i_2 =i_1}^{\lfloor\frac{d- i_0 - i_1}{k-2} \rfloor} ... \sum_{i_{k-3}=i_{k-4}}^{\...
January 21, 2019
We obtain an asymptotic expansion for $p(n)$, the number of partitions of a natural number $n$, starting from a formula that relates its generating function $f(t), t\in (0,1)$ with the characteristic functions of a family of sums of independent random variables indexed by $t$. The expansion consists of a factor (which is the leading term) times an asymptotic series expansion in inverse powers of a quantity that grows as $\sqrt n$ as $n\to \infty$, and whose coefficients are s...
September 27, 2016
Let $f(n)$ denote the number of unordered factorizations of a positive integer $n$ into factors larger than $1$. We show that the number of distinct values of $f(n)$, less than or equal to $x$, is at most $\exp \left( C \sqrt{\frac{\log x}{\log \log x}} \left( 1 + o(1) \right) \right)$, where $C=2\pi\sqrt{2/3}$ and $x$ is sufficiently large. This improves upon a previous result of the first author and F. Luca.
July 7, 2008
Let $f(n)$ denote the number of distinct unordered factorisations of the natural number $n$ into factors larger than 1.In this paper, we address some aspects of the function $f(n)$.
January 19, 2012
This article, written in fond memory of Herbert Saul Wilf (June 13, 1931- Jan. 7, 2012), explores integer partitions where each part shows up a different number of times than the other parts (if it shows up at least once), thereby making a modest contribution towards the solution of one of the eight intrigiung problems posted by Herb Wilf on his website on Dec. 13, 2010