January 24, 2009
Similar papers 3
November 17, 2006
The cyclotomic Birman-Murakami-Wenzl (or BMW) algebras B_n^k, introduced by R. Haring-Oldenburg, are extensions of the cyclotomic Hecke algebras of Ariki-Koike, in the same way as the BMW algebras are extensions of the Hecke algebras of type A. In this paper we focus on the case n=2, producing a basis of B_2^k and constructing its left regular representation.
December 11, 2024
In this note we give a complete classification of all indecomposable yet reducible representations of $B_3$ for dimensions $2$ and $3$ over an algebraically closed field $K$ with characteristic $0$, up to equivalence. We illustrate their utility with an example.
July 8, 2021
In the present paper we study structural aspects of certain quotients of braid groups and virtual braid groups. In particular, we construct and study linear representations $B_n\to {\rm GL}_{n(n-1)/2}\left(\mathbb{Z}[t^{\pm1}]\right)$, $VB_n\to {\rm GL}_{n(n-1)/2}\left(\mathbb{Z}[t^{\pm1}, t_1^{\pm1},t_2^{\pm1},\ldots, t_{n-1}^{\pm1}]\right)$ which are connected with the famous Lawrence-Bigelow-Krammer representation. It turns out that these representations are faithful repre...
June 27, 2000
We give an exposition of the work of Bigelow and Krammer who proved that the Artin braid groups are linear.
March 25, 2008
This note tells you how to construct a k(n)-dimensional family of (isomorphism classes of) irreducible representations of dimension n for the three string braid group B_3, where k(n) is an admissible function of your choosing; for example take k(n) = [ n/2 ] +1 as in arXiv:0803.2778 and arXiv:0803.2785.
November 4, 2014
When Daan Krammer and Stephen Bigelow independently proved that braid groups are linear, they used the Lawrence-Krammer-Bigelow representation for generic values of its variables q and t. The t variable is closely connected to the traditional Garside structure of the braid group and plays a major role in Krammer's algebraic proof. The q variable, associated with the dual Garside structure of the braid group, has received less attention. In this article we give a geometric i...
April 15, 2003
In this paper we survey some work on representations of $B_n$ given by the induced action on a homology module of some space. One of these, called the Lawrence-Krammer representation, recently came to prominence when it was shown to be faithful for all $n$. We will outline the methods used, applying them to a closely related representation for which the proof is slightly easier. The main tool is the Blanchfield pairing, a sesquilinear pairing between elements of relative homo...
January 4, 2012
We show that the span of the variable $q$ in the Lawrence-Krammer-Bigelow representation matrix of a braid is equal to the twice of the dual Garside length of the braid, as was conjectured by Krammer. Our proof is close in spirit to Bigelow's geometric approach. The key observation is that the dual Garside length of a braid can be read off a certain labeling of its curve diagram.
October 1, 2003
It is known that the recently discovered representations of the Artin groups of type A_n, the braid groups, can be constructed via BMW algebras. We introduce similar algebras of type D_n and E_n which also lead to the newly found faithful representations of the Artin groups of the corresponding types. We establish finite dimensionality of these algebras. Moreover, they have ideals I_1 and I_2 with I_2 contained in I_1 such that the quotient with respect to I_1 is the Hecke al...
May 21, 2019
We list the irreducible two dimensional complex representations of the Braid group B3 in elementary way. Then, we make a decomposition of the square of its irreducible Burau representation.