February 7, 2009
Similar papers 3
September 12, 2005
We address the impact of nonlocality in the physical features exhibited by solitons supported by Kerr-type nonlinear media with an imprinted optical lattice. We discover that nonlocality of nonlinear response can profoundly affect the soliton mobility, hence all the related phenomena. Such behavior manifests itself in significant reductions of the Peierls-Nabarro potential with increase of the degree of nonlocality, a result that opens the rare possibility in nature of almost...
March 3, 2004
We report on the observation and quantitative assessment of self-trapped pulsating beams in a highly non-local nonlinear regime. The experiments were conducted in nematic liquid crystals and allow a meaningful comparison with the prediction of a scalar theory in the perturbative limit, while addressing the need for beyond-paraxial analytical treatments.
July 25, 2016
Dissipative Kerr solitons have recently been generated in optical microresonators, enabling ultrashort optical pulses at microwave repetition rates, that constitute coherent and numerically predictable Kerr frequency combs. However, the seeding and excitation of the temporal solitons is associated with changes in the intracavity power, that can lead to large thermal resonance shifts during the excitation process and render the soliton states in most commonly used resonator pl...
April 20, 1994
Near-soliton scanning light-beam propagation in media with both delayed-response Kerr-type and thermal nonlinearities is analyzed. The delayed-response part of the Kerr nonlinearity is shown to be competitive as compared to the thermal nonlinearity, and relevant contributions to a distortion of the soliton form and phase can be mutually compensated. This quasi-soliton beam propagation regime keeps properties of the incli- ned self-trapped channel.
January 30, 2024
Despite the ongoing progress in integrated optical frequency comb technology, compact sources of short bright pulses in the mid-infrared wavelength range from 3 {\mu}m to 12 {\mu}m so far remained beyond reach. The state-of-the-art ultrafast pulse emitters in the mid-infrared are complex, bulky, and inefficient systems based on the downconversion of near-infrared or visible pulsed laser sources. Here we show a purely DC-driven semiconductor laser chip that generates one picos...
June 19, 2000
We investigate the propagation of one-dimensional bright and dark spatial solitons in a nonlocal Kerr-like media, in which the nonlocality is of general form. We find an exact analytical solution to the nonlinear propagation equation in the case of weak nonlocality. We study the properties of these solitons and show their stability.
August 15, 2014
The creation of stable 1D and 2D localized modes in lossy nonlinear media is a fundamental problem in optics and plasmonics. This article gives a short review of theoretical methods elaborated for this purpose, using localized gain applied at one or several "hot spots" (HSs). The introduction surveys a broad class of models for which this approach was developed. Other sections focus in some detail on basic 1D continuous and discrete systems, where the results can be obtained,...
August 12, 2021
A plethora of applications have recently motivated extensive efforts on the generation of low noise Kerr solitons and coherent frequency combs in various platforms ranging from fiber to whispering gallery and integrated microscale resonators. However, the Kerr (cubic) nonlinearity is inherently weak, and in contrast, strong quadratic nonlinearity in optical resonators is expected to provide an alternative means for soliton formation with promising potential. Here, we demonstr...
February 23, 2004
We present an overview of recent advances in the understanding of optical beams in nonlinear media with a spatially nonlocal nonlinear response. We discuss the impact of nonlocality on the modulational instability of plane waves, the collapse of finite-size beams, and the formation and interaction of spatial solitons.
January 19, 2021
Temporal cavity solitons are optical pulses that propagate indefinitely in nonlinear resonators. They are currently attracting a lot of attention, both for their many potential applications and for their connection to other fields of science. Cavity solitons are phase locked to a driving laser. This is what distinguishes them from laser dissipative solitons and the main reason why they are excellent candidates for precision applications such as optical atomic clocks. To date,...