April 14, 2009
These notes arose from my Cambridge Part III course on Additive Combinatorics, given in Lent Term 2009. The aim was to understand the simplest proof of the Bourgain-Glibichuk-Konyagin bounds for exponential sums over subgroups. As a byproduct one obtains a clean proof of the Bourgain-Katz-Tao theorem on the sum-product phenomenon in F_p. The arguments are essentially extracted from a paper of Bourgain, and I benefitted very much from being in receipt of unpublished course notes of Elon Lindenstrauss. No originality is claimed.
Similar papers 1
January 9, 2024
This is an expository account of the proof of the theorem of Bourgain, Glibichuk and Konyagin which provides non-trivial bounds for exponential sums over very small multiplicative subgroups of prime finite fields.
February 25, 2018
In this paper we obtain a series of asymptotic formulae in the sum--product phenomena over the prime field $\mathbf{F}_p$. In the proofs we use usual incidence theorems in $\mathbf{F}_p$, as well as the growth result in ${\rm SL}_2 (\mathbf{F}_p)$ due to Helfgott. Here some of our applications: $\bullet~$ a new bound for the number of the solutions to the equation $(a_1-a_2) (a_3-a_4) = (a'_1-a'_2) (a'_3-a'_4)$, $\,a_i, a'_i\in A$, $A$ is an arbitrary subset of $\mathbf{F}_...
February 26, 2007
Let $\mathbb{F}_p$ be the field of residue classes modulo a prime number $p$ and let $A$ be a non-empty subset of $\mathbb{F}_p.$ In this paper we give an explicit version of the sum-product estimate of Bourgain, Katz, Tao and Bourgain, Glibichuk, Konyagin on the size of $\max\{|A+A|, |AA|\}.$ In particular, our result implies that if $1<|A|\le p^{7/13}(\log p)^{-4/13},$ then $$ \max\{|A+A|, |AA|\}\gg \frac{|A|^{15/14}}{(\log|A|)^{2/7}} . $$
May 31, 2007
We show that there is significant cancellation in certain exponential sums over small multiplicative subgroups of finite fields, giving an exposition of the arguments by Bourgain and Chang.
February 1, 2016
The sum-product phenomena over a finite extension K of $\mathbb{Q}_p$ is explored. The main feature of the results is the fact that the implied constants are independent of $p$.
November 22, 2013
In the paper we obtain some new upper bounds for exponential sums over multiplicative subgroups G of F^*_p having sizes in the range [p^{c_1}, p^{c_2}], where c_1,c_2 are some absolute constants close to 1/2. As an application we prove that in symmetric case G is always an additive basis of order five, provided by |G| > p^{1/2} log^{1/3} p. Also the method allows us to give a new upper bound for Heilbronn's exponential sum.
June 2, 2016
A survey paper on some recent results on additive problems with prime powers.
April 16, 2003
Let q be a prime, A be a subset of a finite field $F=\Bbb Z/q\Bbb Z$, $|A|<\sqrt{|F|}$. We prove the estimate $\max(|A+A|,|A\cdot A|)\ge c|A|^{1+\epsilon}$ for some $\epsilon>0$ and c>0. This extends the result of J. Bourgain, N. Katz, and T. Tao.
July 12, 2009
Let $\mathbb{F}_p$ be the field of residue classes modulo a prime number $p$ and let $A$ be a nonempty subset of $\mathbb{F}_p$. In this paper we show that if $|A|\preceq p^{0.5}$, then \[ \max\{|A\pm A|,|AA|\}\succeq|A|^{13/12};\] if $|A|\succeq p^{0.5}$, then \[ \max\{|A\pm A|,|AA|\}\succapprox \min\{|A|^{13/12}(\frac{|A|}{p^{0.5}})^{1/12},|A|(\frac{p}{|A|})^{1/11}\}.\] These results slightly improve the estimates of Bourgain-Garaev and Shen. Sum-product estimates on differ...
March 13, 2020
Let ${\mathcal H}$ be a multiplicative subgroup of $\mathbb{F}_p^*$ of order $H>p^{1/4}$. We show that $$ \max_{(a,p)=1}\left|\sum_{x\in {\mathcal H}} {\mathbf{\,e}}_p(ax)\right| \le H^{1-31/2880+o(1)}, $$ where ${\mathbf{\,e}}_p(z) = \exp(2 \pi i z/p)$, which improves a result of Bourgain and Garaev (2009). We also obtain new estimates for double exponential sums with product $nx$ with $x \in {\mathcal H}$ and $n \in {\mathcal N}$ for a short interval ${\mathcal N}$ of conse...