July 23, 2009
Due to the stochastic nature of biochemical processes, the copy number of any given type of molecule inside a living cell often exhibits large temporal fluctuations. Here, we develop analytic methods to investigate how the noise arising from a bursting input is reshaped by a transport reaction which is either linear or of the Michaelis-Menten type. A slow transport rate smoothes out fluctuations at the output end and minimizes the impact of bursting on the downstream cellular activities. In the context of gene expression in eukaryotic cells, our results indicate that transcriptional bursting can be substantially attenuated by the transport of mRNA from nucleus to cytoplasm. Saturation of the transport mediators or nuclear pores contributes further to the noise reduction. We suggest that the mRNA transport should be taken into account in the interpretation of relevant experimental data on transcriptional bursting.
Similar papers 1
February 22, 2011
The intrinsic stochasticity of gene expression can lead to large variability in protein levels for genetically identical cells. Such variability in protein levels can arise from infrequent synthesis of mRNAs which in turn give rise to bursts of protein expression. Protein expression occurring in bursts has indeed been observed experimentally and recent studies have also found evidence for transcriptional bursting, i.e. production of mRNAs in bursts. Given that there are disti...
January 9, 2013
This paper considers the behavior of discrete and continuous mathematical models for gene expression in the presence of transcriptional/translational bursting. We treat this problem in generality with respect to the distribution of the burst size as well as the frequency of bursting, and our results are applicable to both inducible and repressible expression patterns in prokaryotes and eukaryotes. We have given numerous examples of the applicability of our results, especially...
October 10, 2021
Gene expression is a fundamental process in a living system. The small RNAs (sRNAs) is widely observed as a global regulator in gene expression. The inherent nonlinearity in this regulatory process together with the bursty production of messenger RNA (mRNA), sRNA and protein make the exact solution for this stochastic process intractable. This is particularly the case when quantifying the protein noise level, which has great impact on multiple cellular processes. Here we prop...
May 21, 2024
The canonical model of mRNA expression is the telegraph model, describing a gene that switches on and off, subject to transcription and decay. It describes steady-state mRNA distributions that subscribe to transcription in bursts with first-order decay, referred to as super-Poissonian expression. Using a telegraph-like model, I propose an answer to the question of why gene expression is bursty in the first place, and what benefits it confers. Using analytics for the entropy p...
August 3, 2015
The dynamics of short-lived mRNA results in bursts of protein production in gene regulatory networks. We investigate the propagation of bursting noise between different levels of mathematical modelling, and demonstrate that conventional approaches based on diffusion approximations can fail to capture bursting noise. An alternative coarse-grained model, the so-called piecewise deterministic Markov process (PDMP), is seen to outperform the diffusion approximation in biologicall...
January 11, 2011
Regulation of intrinsic noise in gene expression is essential for many cellular functions. Correspondingly, there is considerable interest in understanding how different molecular mechanisms of gene expression impact variations in protein levels across a population of cells. In this work, we analyze a stochastic model of bursty gene expression which considers general waiting-time distributions governing arrival and decay of proteins. By mapping the system to models analyzed i...
December 30, 2014
Gene expression in individual cells is highly variable and sporadic, often resulting in the synthesis of mRNAs and proteins in bursts. Bursting in gene expression is known to impact cell-fate in diverse systems ranging from latency in HIV-1 viral infections to cellular differentiation. It is generally assumed that bursts are geometrically distributed and that they arrive according to a Poisson process. On the other hand, recent single-cell experiments provide evidence for com...
November 7, 2007
Transcriptional pulsing has been observed in both prokaryotes and eukaryotes and plays a crucial role in cell to cell variability of protein and mRNA numbers. The issue is how the time constants associated with episodes of transcriptional bursting impact cellular mRNA and protein distributions and reciprocally, to what extent experimentally observed distributions can be attributed to transcriptional pulsing. We address these questions by investigating the exact time-dependent...
March 10, 2016
Over the last several decades it has been increasingly recognized that stochastic processes play a central role in transcription. Though many stochastic effects have been explained, the source of transcriptional bursting (one of the most well-known sources of stochasticity) has continued to evade understanding. Recent results have pointed to mechanical feedback as the source of transcriptional bursting but a reconciliation of this perspective with preexisting views of transcr...
August 12, 2015
We present a theoretical framework to analyze the dynamics of gene expression with stochastic bursts. Beginning with an individual-based model which fully accounts for the messenger RNA (mRNA) and protein populations, we propose a novel expansion of the master equation for the joint process. The resulting coarse-grained model reduces the dimensionality of the system, describing only the protein population while fully accounting for the effects of discrete and fluctuating mRNA...