July 31, 2009
Similar papers 3
November 18, 2005
Loop quantum cosmology is an application of recent developments for a non-perturbative and background independent quantization of gravity to a cosmological setting. Characteristic properties of the quantization such as discreteness of spatial geometry entail physical consequences for the structure of classical singularities as well as the evolution of the very early universe. While the singularity issue in general requires one to use difference equations for a wave function o...
July 17, 2007
In homogeneous and isotropic loop quantum cosmology, gravity can behave repulsively at Planckian energy densities leading to the replacement of the big bang singularity with a big bounce. Yet in any bouncing scenario it is important to include non-linear effects from anisotropies which typically grow during the collapsing phase. We investigate the dynamics of a Bianchi I anisotropic model within the framework of loop quantum cosmology. Using effective semi-classical equations...
January 20, 2006
Quantum gravity is expected to be necessary in order to understand situations where classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e. the fact that the backward evolution of a classical space-time inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high cu...
December 5, 2016
In the last decade, progress on quantization of homogeneous cosmological spacetimes using techniques of loop quantum gravity has led to insights on various fundamental questions and has opened new avenues to explore Planck scale physics. These include the problem of singularities and their possible generic resolution, constructing viable non-singular models of the very early universe, and bridging quantum gravity with cosmological observations. These results, which emerge fro...
July 29, 2009
In recent years, Loop Quantum Gravity has emerged as a solid candidate for a nonperturbative quantum theory of General Relativity. It is a background independent theory based on a description of the gravitational field in terms of holonomies and fluxes. In order to discuss its physical implications, a lot of attention has been paid to the application of the quantization techniques of Loop Quantum Gravity to symmetry reduced models with cosmological solutions, a line of resear...
June 1, 2011
Cosmological models involving a bounce from a contracting to an expanding universe can address the standard cosmological puzzles and generate "primordial" density perturbations without the need for inflation. Some such models, in particular the ekpyrotic and cyclic models that we focus on, fit rather naturally into string theory. We discuss a number of topics related to these models: the reasoning that leads to the ekpyrotic phase, the predictions for upcoming observations, t...
January 10, 2011
Loop Quantum Gravity is a background independent, nonperturbative approach to the quantization of General Relativity. Its application to models of interest in cosmology and astrophysics, known as Loop Quantum Cosmology, has led to new and exciting views of the gravitational phenomena that took place in the early universe, or that occur in spacetime regions where Einstein's theory predicts singularities. We provide a brief introduction to the bases of Loop Quantum Cosmology an...
February 28, 2008
Despite its great successes in accounting for the current observations, the so called `standard' model of cosmology faces a number of fundamental unresolved questions. Paramount among these are those relating to the nature of the origin of the universe and its early evolution. Regarding the question of origin, the main difficulty has been the fact that within the classical general relativistic framework, the `origin' is almost always a singular event at which the laws of phys...
March 7, 2005
Loop quantum cosmology applies techniques derived for a background independent quantization of general relativity to cosmological situations and draws conclusions for the very early universe. Direct implications for the singularity problem as well as phenomenology in the context of inflation or bouncing universes result, which will be reviewed here. The discussion focuses on recent new results for structure formation and generalizations of the methods.
September 29, 2011
A characteristic feature of loop quantization of the isotropic and Bianchi-I spacetimes is the existence of universal bounds on the energy density and the expansion and shear scalars, independent of the matter content. We investigate the properties of these physical quantities in Bianchi-II and Bianchi-IX spacetimes, which have been recently loop quantized using the connection operator approach. Using the effective Hamiltonian approach, we show that for Bianchi-II spacetime, ...