September 26, 2009
We show that renormalization group (RG) theory applied to complex networks are useful to classify network topologies into universality classes in the space of configurations. The RG flow readily identifies a small-world/fractal transition by finding (i) a trivial stable fixed point of a complete graph, (ii) a non-trivial point of a pure fractal topology that is stable or unstable according to the amount of long-range links in the network, and (iii) another stable point of a fractal with short-cuts that exists exactly at the small-world/fractal transition. As a collateral, the RG technique explains the coexistence of the seemingly contradicting fractal and small-world phases and allows to extract information on the distribution of short-cuts in real-world networks, a problem of importance for information flow in the system.
Similar papers 1
November 17, 2008
Complex networks have acquired a great popularity in recent years, since the graph representation of many natural, social and technological systems is often very helpful to characterize and model their phenomenology. Additionally, the mathematical tools of statistical physics have proven to be particularly suitable for studying and understanding complex networks. Nevertheless, an important obstacle to this theoretical approach is still represented by the difficulties to draw ...
January 27, 2020
Recently, the concept of geometric renormalization group provides a good approach for studying the structural symmetry and functional invariance of complex networks. Along this line, we systematically investigate the finite-size scaling of structural and dynamical observables in geometric renormalization flows of synthetic and real evolutionary networks. Our results show that these observables can be well characterized by a certain scaling function. Specifically, we show that...
December 17, 2024
The renormalization group (RG) is a powerful theoretical framework developed to consistently transform the description of configurations of systems with many degrees of freedom, along with the associated model parameters and coupling constants, across different levels of resolution. It also provides a way to identify critical points of phase transitions and study the system's behaviour around them by distinguishing between relevant and irrelevant details, the latter being unn...
March 25, 2008
Recently, it has been claimed that some complex networks are self-similar under a convenient renormalization procedure. We present a general method to study renormalization flows in graphs. We find that the behavior of some variables under renormalization, such as the maximum number of connections of a node, obeys simple scaling laws, characterized by critical exponents. This is true for any class of graphs, from random to scale-free networks, from lattices to hierarchical gr...
June 4, 2024
The renormalization group (RG) constitutes a fundamental framework in modern theoretical physics. It allows the study of many systems showing states with large-scale correlations and their classification in a relatively small set of universality classes. RG is the most powerful tool for investigating organizational scales within dynamic systems. However, the application of RG techniques to complex networks has presented significant challenges, primarily due to the intricate i...
March 12, 2024
While renormalization groups are fundamental in physics, renormalization of complex networks remains vague in its conceptual definition and methodology. Here, we propose a novel strategy to renormalize complex networks. Rather than resorting to handling the bare structure of a network, we overlay it with a readily renormalizable physical model, which reflects real-world scenarios with a broad generality. From the renormalization of the overlying system, we extract a rigorous ...
June 21, 2010
The spectral dimension has been widely used to understand transport properties on regular and fractal lattices. Nevertheless, it has been little studied for complex networks such as scale-free and small world networks. Here we study the spectral dimension and the return-to-origin probability of random walks on hierarchical scale-free networks, which can be either fractals or non-fractals depending on the weight of shortcuts. Applying the renormalization group (RG) approach to...
September 10, 2016
We apply the renormalization group theory to the dynamical systems with the simplest example of basic biological motifs. This includes the interpretation of complex networks as the perturbation to simple network. This is the first step to build our original framework to infer the properties of biological networks, and the basis work to see its effectiveness to actual complex systems.
June 27, 2024
Scale invariance profoundly influences the dynamics and structure of complex systems, spanning from critical phenomena to network architecture. Here, we propose a precise definition of scale-invariant networks by leveraging the concept of a constant entropy loss rate across scales in a renormalization-group coarse-graining setting. This framework enables us to differentiate between scale-free and scale-invariant networks, revealing distinct characteristics within each class. ...
June 1, 2017
Multiple scales coexist in complex networks. However, the small world property makes them strongly entangled. This turns the elucidation of length scales and symmetries a defiant challenge. Here, we define a geometric renormalization group for complex networks and use the technique to investigate networks as viewed at different scales. We find that real networks embedded in a hidden metric space show geometric scaling, in agreement with the renormalizability of the underlying...