November 27, 2009
Similar papers 3
February 21, 2013
Genetic and pharmacological perturbation experiments, such as deleting a gene and monitoring gene expression responses, are powerful tools for studying cellular signal transduction pathways. However, it remains a challenge to automatically derive knowledge of a cellular signaling system at a conceptual level from systematic perturbation-response data. In this study, we explored a framework that unifies knowledge mining and data mining approaches towards the goal. The framewor...
January 3, 2023
Biological systems and processes are networks of complex nonlinear regulatory interactions between nucleic acids, proteins, and metabolites. A natural way in which to represent these interaction networks is through the use of a graph. In this formulation, each node represents a nucleic acid, protein, or metabolite and edges represent intermolecular interactions (inhibition, regulation, promotion, coexpression, etc.). In this work, a novel algorithm for the discovery of latent...
February 19, 2025
Recurrent neural networks are frequently studied in terms of their information-processing capabilities. The structural properties of these networks are seldom considered, beyond those emerging from the connectivity tuning necessary for network training. However, real biological networks have non-contingent architectures that have been shaped by evolution over eons, constrained partly by information-processing criteria, but more generally by fitness maximization requirements. ...
December 12, 2023
Transcriptomic data is a treasure-trove in modern molecular biology, as it offers a comprehensive viewpoint into the intricate nuances of gene expression dynamics underlying biological systems. This genetic information must be utilised to infer biomolecular interaction networks that can provide insights into the complex regulatory mechanisms underpinning the dynamic cellular processes. Gene regulatory networks and protein-protein interaction networks are two major classes of ...
December 5, 2005
In this paper, we analyse large random Boolean networks in terms of a constraint satisfaction problem. We first develop an algorithmic scheme which allows to prune simple logical cascades and under-determined variables, returning thereby the computational core of the network. Second we apply the cavity method to analyse number and organisation of fixed points. We find in particular a phase transition between an easy and a complex regulatory phase, the latter one being charact...
March 20, 2013
Network analysis provides a powerful framework for the interpretation of genome-wide data. While static network approaches have proved fruitful, there is increasing interest in the insights gained from the analysis of cellular networks under different conditions. In this work, we study the effect of stress on cellular networks in fission yeast. Stress elicits a sophisticated and large scale cellular response, involving a shift of resources from cell growth and metabolism towa...
September 22, 2006
Dynamical properties of the transcriptional regulatory network of {\it Escherichia coli} and {\it Saccharomyces cerevisiae} are studied within the framework of random Boolean functions. The dynamical response of these networks to a single point mutation is characterized by the number of mutated elements as a function of time and the distribution of the relaxation time to a new stationary state, which turn out to be different in both networks. Comparison with the behavior of r...
May 3, 2005
The architecture of the network of protein-protein physical interactions in Saccharomyces cerevisiae is exposed through the combination of two complementary theoretical network measures, betweenness centrality and `Q-modularity'. The yeast interactome is characterized by well-defined topological modules connected via a small number of inter-module protein interactions. Should such topological inter-module connections turn out to constitute a form of functional coordination be...
October 17, 2023
Symmetry principles have proven important in physics, deep learning and geometry, allowing for the reduction of complicated systems to simpler, more comprehensible models that preserve the system's features of interest. Biological systems often show a high level of complexity and consist of a high number of interacting parts. Using symmetry fibrations, the relevant symmetries for biological 'message-passing' networks, we reduced the gene regulatory networks of E. coli and B. ...
September 9, 2011
Topological network motifs represent functional relationships within and between regulatory and protein-protein interaction networks. Enriched motifs often aggregate into self-contained units forming functional modules. Theoretical models for network evolution by duplication-divergence mechanisms and for network topology by hierarchical scale-free networks have suggested a one-to-one relation between network motif enrichment and aggregation, but this relation has never been t...