December 10, 2009
Similar papers 4
May 11, 2017
Let ${\mathfrak g}$ be a finite dimensional complex semisimple Lie algebra. The finite dimensional representations of the quantized enveloping algebra $U_q({\mathfrak g})$ form a braided monoidal category $O_{int}$. We show that the category of finite dimensional representations of a quantum symmetric pair coideal subalgebra $B_{c,s}$ of $U_q({\mathfrak g})$ is a braided module category over an equivariantization of $O_{int}$. The braiding for $B_{c,s}$ is realized by a unive...
March 9, 2007
We investigate the braid group representations arising from categories of representations of twisted quantum doubles of finite groups. For these categories, we show that the resulting braid group representations always factor through finite groups, in contrast to the categories associated with quantum groups at roots of unity. We also show that in the case of p-groups, the corresponding pure braid group representations factor through a finite p-group, which answers a question...
January 4, 2012
We show that the span of the variable $q$ in the Lawrence-Krammer-Bigelow representation matrix of a braid is equal to the twice of the dual Garside length of the braid, as was conjectured by Krammer. Our proof is close in spirit to Bigelow's geometric approach. The key observation is that the dual Garside length of a braid can be read off a certain labeling of its curve diagram.
November 4, 2014
When Daan Krammer and Stephen Bigelow independently proved that braid groups are linear, they used the Lawrence-Krammer-Bigelow representation for generic values of its variables q and t. The t variable is closely connected to the traditional Garside structure of the braid group and plays a major role in Krammer's algebraic proof. The q variable, associated with the dual Garside structure of the braid group, has received less attention. In this article we give a geometric i...
September 12, 1997
Is is shown that the quantum Weyl group of $sl_2$ contains an element that is a cylinder twist, i.e. it gives rise to representations of the braid group of Coxeter type B.
March 19, 2008
We construct a [(n+1)/2]+1 parameters family of irreducible representations of the Braid group B_3 in arbitrary dimension n\in N, using a q-deformation of the Pascal triangle. This construction extends in particular results by S.P.Humphries [8], who constructed representations of the braid group B_3 in arbitrary dimension using the classical Pascal triangle. E.Ferrand [7] obtained an equivalent representation of B_3 by considering two special operators in the space C^n[X]. Sl...
May 11, 2004
In a previous work [11], the author considered a representation of the braid group \rho: B_n\to GL_m(\Bbb Z[q^{\pm 1},t^{\pm 1}]) (m=n(n-1)/2), and proved it to be faithful for n=4. Bigelow [3] then proved the same representation to be faithful for all n by a beautiful topological argument. The present paper gives a different proof of the faithfulness for all n. We establish a relation between the Charney length in the braid group and exponents of t. A certain B_n-invariant s...
February 20, 2010
In this paper the author finds explicitly all finite-dimensional irreducible representations of a series of finite permutation groups that are homomorphic images of Artin braid group.
September 15, 2010
In the present paper we prove decomposition formulae for the braided symmetric powers of simple modules over the quantized enveloping algebra $U_q(sl_2)$; natural quantum analogues of the classical symmetric powers of a module over a complex semisimple Lie algebra. We show that their point modules form natural non-commutative curves and surfaces and conjecture that braided symmetric algebras give rise to an interesting non-commutative geometry, which can be viewed as a flat d...
December 11, 2024
In this note we give a complete classification of all indecomposable yet reducible representations of $B_3$ for dimensions $2$ and $3$ over an algebraically closed field $K$ with characteristic $0$, up to equivalence. We illustrate their utility with an example.