May 20, 2010
Similar papers 2
October 5, 2018
A major question in our understanding of the fabric of the world is where the randomness of some quantum phenomena comes from and how to represent it in a rational theory. The statistical interpretation of quantum mechanics made its way progressively since the early days of the theory. We summarize the main historical steps and then we outline how the randomness gains to be depicted by using tools adapted to Markov processes. We consider a model system corresponding to experi...
May 30, 2016
We discuss the statistics of emission of photons by a single atom or ion illuminated by a laser beam at the frequency of quasi-resonance between two energy levels, a situation that corresponds to real experiments. We extend this to the case of two laser beams resonant with the energy differences between two excited levels and the ground state (three level atom in V-configuration). We use a novel approach of this type of problem by considering Kolmogorov equation for the proba...
August 4, 2013
A quantum system in contact with a heat bath undergoes quantum transitions between energy levels upon absorption or emission of energy quanta by the bath. These transitions remain virtual unless the energy of the system is measured repeatedly, even continuously in time. Isolating the two indispensable mechanisms in competition, we describe in a synthetic way the main physical features of thermally activated quantum jumps. Using classical tools of stochastic analysis, we compu...
December 9, 2021
We consider Markovian open quantum systems subject to stochastic resetting, which means that the dissipative time evolution is reset at randomly distributed times to the initial state. We show that the ensuing dynamics is non-Markovian and has the form of a generalized Lindblad equation. Interestingly, the statistics of quantum-jumps can be exactly derived. This is achieved by combining techniques from the thermodynamics of quantum-jump trajectories with the renewal structure...
December 3, 2020
I present an approach to calculate the finite-frequency quantum noise in systems strongly coupled to structured reservoirs based on the Markovian embedding. This technique consists of mapping of the non-Markovian dynamics of the original system onto the Markovian dynamics of the extended supersystem. The applicability of this method is demonstrated on a single electronic level coupled to a reservoir with an energy-dependent density of states. This model can be mapped onto an ...
June 16, 2002
We report high time-resolution measurements of photon statistics from pairs of dye molecules coupled by fluorescence resonance energy transfer (FRET). In addition to quantum-optical photon antibunching, we observe photon bunching on a timescale of several nanoseconds. We show by numerical simulation that configuration fluctuations in the coupled fluorophore system could account for minor deviations of our data from predictions of basic Forster theory. With further characteriz...
November 3, 2019
Non-equilibrium photon correlations of coherently excited single quantum systems can reveal their internal quantum dynamics and provide spectroscopic access. Here we propose and discuss the fundamentals of a coherent photon coincidence spectroscopy based on the application of laser pulses with variable delay and the detection of an time-averaged two-photon coincidence rate. For demonstration, two simple but important cases, i.e., an exciton - biexciton in a quantum dot and tw...
October 16, 2023
The blinking statistics of quantum emitters and their corresponding Markov models play an important role in high resolution microscopy of biological samples as well as in nano-optoelectronics and many other fields of science and engineering. Current methods for analyzing the blinking statistics like the full counting statistics or the Viterbi algorithm break down for low photon rates. We present an evaluation scheme that eliminates the need for both a minimum photon flux and ...
June 10, 2016
We demonstrate with an experiment how molecules are a natural test-bed for probing fundamental quantum thermodynamics. Single-molecule spectroscopy has undergone transformative change in the past decade with the advent of techniques permitting individual molecules to be distinguished and probed. By considering the time-resolved emission spectrum of organic molecules as arising from quantum jumps between states, we demonstrate that the quantum Jarzynski equality is satisfied i...
May 31, 2012
Simulation methods based on stochastic realizations of state vector evolutions are commonly used tools to solve open quantum system dynamics, both in the Markovian and non-Markovian regime. Here, we address the question of waiting time distribution (WTD) of quantum jumps for non-Markovian systems. We generalize Markovian quantum trajectory methods in the sense of deriving an exact analytical WTD for non-Markovian quantum dynamics and show explicitly how to construct this dist...