June 8, 2010
Similar papers 4
February 9, 2017
We give conditions for the existence of the Minkowski content of limit sets stemming from infinite conformal graph directed systems. As an application we obtain Minkowski measurability of Apollonian gaskets, provide explicit formulae of the Minkowski content, and prove the analytic dependence on the initial circles. Further, we are able to link the fractal Euler characteristic, as well as the Minkowski content, of Apollonian gaskets with the asymptotic behaviour of the circle...
September 13, 2016
Any space-filling packing of spheres can be cut by a plane to obtain a space-filling packing of disks. Here, we deal with space-filling packings generated using inversive geometry leading to exactly self-similar fractal packings. First, we prove that cutting along a random hyperplane leads in general to a packing with a fractal dimension of the one of the uncut packing minus one. Second, we find special cuts which can be constructed themselves by inversive geometry. Such spec...
March 28, 2019
In this paper, we prove the identity $\dim_{\textrm H}(F)=d\cdot \dim_{\textrm H}(\alpha^{-1}(F))$, where $\dim_{\textrm H}$ denotes Hausdorff dimension, $F\subseteq \mathbb{R}^d$, and $\alpha:[0,1]\to [0,1]^d$ is a function whose constructive definition is addressed from the viewpoint of the powerful concept of a fractal structure. Such a result stands particularly from some other results stated in a more general setting. Thus, Hausdorff dimension of higher dimensional subse...
January 20, 2014
Four mutually tangent spheres form two gaps. In each of these, one can inscribe in a unique way four mutually tangent spheres such that each one of these spheres is tangent to exactly three of the original spheres. Repeating the process gives rise to a generalized Apollonian sphere packing. These packings have remarkable properties. One of them is the local to global principle and will be proven in this paper.
July 22, 2010
This paper provides a new model to compute the fractal dimension of a subset on a generalized-fractal space. Recall that fractal structures are a perfect place where a new definition of fractal dimension can be given, so we perform a suitable discretization of the Hausdorff theory of fractal dimension. We also find some connections between our definition and the classical ones and also with fractal dimensions I & II (see http://arxiv.org/submit/0080421/pdf). Therefore, we gen...
March 12, 2002
We consider growing spheres seeded by random injection in time and space. Growth stops when two spheres meet leading eventually to a jammed state. We study the statistics of growth limited by packing theoretically in d dimensions and via simulation in d=2, 3, and 4. We show how a broad class of such models exhibit distributions of sphere radii with a universal exponent. We construct a scaling theory that relates the fractal structure of these models to the decay of their pore...
March 28, 2000
We address the problem of evaluating the number $S_N(t)$ of distinct sites visited up to time t by N noninteracting random walkers all initially placed on one site of a deterministic fractal lattice. For a wide class of fractals, of which the Sierpinski gasket is a typical example, we propose that, after the short-time compact regime and for large N, $S_N(t) \approx \hat{S}_N(t) (1-\Delta)$, where $\hat{S}_N(t)$ is the number of sites inside a hypersphere of radius $R [\ln (N...
September 5, 2011
We present the first systematic algorithm to estimate the maximum packing density of spheres when the grain sizes are drawn from an arbitrary size distribution. With an Apollonian filling rule, we implement our technique for disks in 2d and spheres in 3d. As expected, the densest packing is achieved with power-law size distributions. We also test the method on homogeneous and on empirical real distributions, and we propose a scheme to obtain experimentally accessible distribu...
January 26, 2022
A Comment by Morse and Charbonneau shows that our recent analytical solution to the random close packing (RCP) problem is in good agreement with packings data in dimensions $d<6$ but deviates from the data for $d\geq6$. In this Reply we argue, using results related to the $E_{8}$ Lie group, that no RCP solution based on contact numbers and marginal stability is expected to capture RCP in large space dimensions $d \geq 8$ where a large gap exists between nearest neighbours alr...
September 3, 2017
Apollonian gaskets are formed by repeatedly filling the gaps between three mutually tangent circles with further tangent circles. In this paper we give explicit formulas for the the limiting pair correlation and the limiting nearest neighbor spacing of centers of circles from a fixed Apollonian gasket. These are corollaries of the convergence of moments that we prove. The input from ergodic theory is an extension of Mohammadi-Oh's Theorem on the equidisribution of expanding h...