November 18, 2010
Similar papers 2
August 13, 2012
Regina is a software package for studying 3-manifold triangulations and normal surfaces. It includes a graphical user interface and Python bindings, and also supports angle structures, census enumeration, combinatorial recognition of triangulations, and high-level functions such as 3-sphere recognition, unknot recognition and connected sum decomposition. This paper brings 3-manifold topologists up-to-date with Regina as it appears today, and documents for the first time in ...
May 15, 2024
Real 3-manifold triangulations can be uniquely represented by isomorphism signatures. Databases of these isomorphism signatures are generated for a variety of 3-manifolds and knot complements, using SnapPy and Regina, then these language-like inputs are used to train various machine learning architectures to differentiate the manifolds, as well as their Dehn surgeries, via their triangulations. Gradient saliency analysis then extracts key parts of this language-like encoding ...
September 25, 2000
We introduce a numerical isomorphism invariant p(T) for any triangulation T of S^3. Although its definition is purely topological (inspired by the bridge number of knots), p(T) reflects the geometric properties of T. Specifically, if T is polytopal or shellable then p(T) is `small' in the sense that we obtain a linear upper bound for p(T) in the number n=n(T) of tetrahedra of T. Conversely, if p(T) is `small' then T is `almost' polytopal, since we show how to transform T ...
July 30, 2003
The face pairing graph of a 3-manifold triangulation is a 4-valent graph denoting which tetrahedron faces are identified with which others. We present a series of properties that must be satisfied by the face pairing graph of a closed minimal P^2-irreducible triangulation. In addition we present constraints upon the combinatorial structure of such a triangulation that can be deduced from its face pairing graph. These results are then applied to the enumeration of closed minim...
March 30, 2022
The search for universality in random triangulations of manifolds, like those featuring in (Euclidean) Dynamical Triangulations, is central to the random geometry approach to quantum gravity. In case of the 3-sphere, or any other manifold of dimension greater than two for that matter, the pursuit is held back by serious challenges, including the wide open problem of enumerating triangulations. In an attempt to bypass the toughest challenges we identify a restricted family of ...
November 7, 2003
A census is presented of all closed non-orientable 3-manifold triangulations formed from at most seven tetrahedra satisfying the additional constraints of minimality and P^2-irreducibility. The eight different 3-manifolds represented by these 41 different triangulations are identified and described in detail, with particular attention paid to the recurring combinatorial structures that are shared amongst the different triangulations. Using these recurring structures, the resu...
September 25, 2015
A triangulation of a $3$-manifold can be shown to be homeomorphic to the $3$-sphere by describing a discrete Morse function on it with only two critical faces, that is, a sequence of elementary collapses from the triangulation with one tetrahedron removed down to a single vertex. Unfortunately, deciding whether such a sequence exist is believed to be very difficult in general. In this article we present a method, based on uniform spanning trees, to estimate how difficult it...
May 11, 2021
It is known that an ideal triangulation of a compact $3$-manifold with nonempty boundary is minimal if and only if it contains the minimum number of edges among all ideal triangulations of the manifold. Therefore, any ideal one-edge triangulation (i.e., an ideal singular triangulation with exactly one edge) is minimal. Vesnin, Turaev, and the first author showed that an ideal two-edge triangulation is minimal if no $3$-$2$ Pachner move can be applied. In this paper we show th...
June 2, 2014
This workshop about triangulations of manifolds in computational geometry and topology was held at the 2014 CG-Week in Kyoto, Japan. It focussed on computational and combinatorial questions regarding triangulations, with the goal of bringing together researchers working on various aspects of triangulations and of fostering a closer collaboration within the computational geometry and topology community. Triangulations are highly suitable for computations due to their clear...
October 16, 1994
We give a simple combinatoric proof of an exponential upper bound on the number of distinct 3-manifolds that can be constructed by successively identifying nearest neighbour pairs of triangles in the boundary of a simplicial 3-ball and show that all closed simplicial manifolds that can be constructed in this manner are homeomorphic to $S^3$. We discuss the problem of proving that all 3-dimensional simplicial spheres can be obtained by this construction and give an example of ...