January 11, 2011
Similar papers 2
August 3, 2015
The dynamics of short-lived mRNA results in bursts of protein production in gene regulatory networks. We investigate the propagation of bursting noise between different levels of mathematical modelling, and demonstrate that conventional approaches based on diffusion approximations can fail to capture bursting noise. An alternative coarse-grained model, the so-called piecewise deterministic Markov process (PDMP), is seen to outperform the diffusion approximation in biologicall...
September 29, 2010
We show how one may analytically compute the stationary density of the distribution of molecular constituents in populations of cells in the presence of noise arising from either bursting transcription or translation, or noise in degradation rates arising from low numbers of molecules. We have compared our results with an analysis of the same model systems (either inducible or repressible operons) in the absence of any stochastic effects, and shown the correspondence between ...
August 25, 2016
We study a stochastic model of gene expression, in which protein production has a form of random bursts whose size distribution is arbitrary, whereas protein decay is a first-order reaction. We find exact analytical expressions for the time evolution of the cumulant-generating function for the most general case when both the burst size probability distribution and the model parameters depend on time in an arbitrary (e.g. oscillatory) manner, and for arbitrary initial conditio...
March 10, 2016
Over the last several decades it has been increasingly recognized that stochastic processes play a central role in transcription. Though many stochastic effects have been explained, the source of transcriptional bursting (one of the most well-known sources of stochasticity) has continued to evade understanding. Recent results have pointed to mechanical feedback as the source of transcriptional bursting but a reconciliation of this perspective with preexisting views of transcr...
January 23, 2024
We introduce a biologically detailed, stochastic model of gene expression describing the multiple rate-limiting steps of transcription, nuclear pre-mRNA processing, nuclear mRNA export, cytoplasmic mRNA degradation and translation of mRNA into protein. The processes in sub-cellular compartments are described by an arbitrary number of processing stages, thus accounting for a significantly finer molecular description of gene expression than conventional models such as the teleg...
February 5, 2009
We derive exact solutions of simplified models for the temporal evolution of the protein concentration within a cell population arbitrarily far from the stationary state. We show that monitoring the dynamics can assist in modeling and understanding the nature of the noise and its role in gene expression and protein production. We introduce a new measure, the cell turnover distribution, which can be used to probe the phase of transcription of DNA into messenger RNA.
December 17, 2008
Gene expression is significantly stochastic making modeling of genetic networks challenging. We present an approximation that allows the calculation of not only the mean and variance but also the distribution of protein numbers. We assume that proteins decay substantially slower than their mRNA and confirm that many genes satisfy this relation using high-throughput data from budding yeast. For a two-stage model of gene expression, with transcription and translation as first-o...
December 9, 2019
The bulk of stochastic gene expression models in the literature do not have an explicit description of the age of a cell within a generation and hence they cannot capture events such as cell division and DNA replication. Instead, many models incorporate cell cycle implicitly by assuming that dilution due to cell division can be described by an effective decay reaction with first-order kinetics. If it is further assumed that protein production occurs in bursts then the station...
July 20, 2009
Signal-processing molecules inside cells are often present at low copy number, which necessitates probabilistic models to account for intrinsic noise. Probability distributions have traditionally been found using simulation-based approaches which then require estimating the distributions from many samples. Here we present in detail an alternative method for directly calculating a probability distribution by expanding in the natural eigenfunctions of the governing equation, wh...
April 17, 2019
Many of the existing stochastic models of gene expression contain the first-order decay reaction term that may describe active protein degradation or dilution. If the model variable is interpreted as the molecule number, and not concentration, the decay term may also approximate the loss of protein molecules due to cell division as a continuous degradation process. The seminal model of that kind leads to gamma distributions of protein levels, whose parameters are defined by t...