ID: 1103.0422

On Zaremba's Conjecture

March 2, 2011

View on ArXiv
Jean Bourgain, Alex Kontorovich
Mathematics
Number Theory

It is shown that there is a constant A and a density one subset S of the positive integers, such that for all q in S there is some 1<=p<q, (p, q)=1, so that p/q has all its partial quotients bounded by A.

Similar papers 1

On Zaremba's Conjecture

July 19, 2011

92% Match
Jean Bourgain, Alex Kontorovich
Number Theory

Zaremba's 1971 conjecture predicts that every integer appears as the denominator of a finite continued fraction whose partial quotients are bounded by an absolute constant. We confirm this conjecture for a set of density one.

Find SimilarView on arXiv

An Improvement To Zaremba's Conjecture

October 14, 2013

89% Match
ShinnYih Huang
Number Theory

We prove there exists a density one subset $\dd \subset \N$ such that each $n \in \dd$ is the denominator of a finite continued fraction with partial quotients bounded by 5.

Find SimilarView on arXiv

On a modular form of Zaremba's conjecture

November 18, 2019

89% Match
Nikolay G. Moshchevitin, Ilya D. Shkredov
Number Theory
Combinatorics

We prove that for any prime $p$ there is a divisible by $p$ number $q = O(p^{30})$ such that for a certain positive integer $a$ coprime with $q$ the ratio $a/q$ has bounded partial quotients. In the other direction we show that there is an absolute constant $C>0$ such that for any prime $p$ exist divisible by $p$ number $q = O(p^{C})$ and a number $a$, $a$ coprime with $q$ such that all partial quotients of the ratio $a/q$ are bounded by two.

Find SimilarView on arXiv
Nikolay Moshchevitin, Brendan Murphy, Ilya Shkredov
Number Theory
Combinatorics

We prove in particular that for any sufficiently large prime $p$ there is $1\le a<p$ such that all partial quotients of $a/p$ are bounded by $O(\log p/\log \log p)$. For composite denominators a similar result is obtained. This improves the well--known Korobov bound concerning Zaremba's conjecture from the theory of continued fractions.

A strengthening of a theorem of Bourgain-Kontorovich-IV

March 20, 2015

88% Match
I. D. Kan
Number Theory

Zaremba's conjecture (1971) states that every positive integer number d can be represented as a denominator of a finite continued fraction b/d = [d1,d2,...,dk], with all partial quotients d1,d2,...,dk being bounded by an absolute constant A. Several new theorems concerning this conjecture were proved by Bourgain and Kontorovich in 2011. The easiest of them states that the set of numbers satisfying Zaremba's conjecture with A = 50 has positive proportion in natural numbers. In...

Find SimilarView on arXiv

A reinforcement of the Bourgain-Kontorovich's theorem by elementary methods II

March 16, 2013

88% Match
Dmitriy Frolenkov, Igor D. Kan
Number Theory

Zaremba's conjecture (1971) states that every positive integer number $d$ can be represented as a denominator (continuant) of a finite continued fraction $\frac{b}{d}=[d_1,d_2,...,d_{k}],$ with all partial quotients $d_1,d_2,...,d_{k}$ being bounded by an absolute constant $A.$ Recently (in 2011) several new theorems concerning this conjecture were proved by Bourgain and Kontorovich. The easiest of them states that the set of numbers satisfying Zaremba's conjecture with A=50 ...

Find SimilarView on arXiv

A note on the reinforcement of the Bourgain-Kontorovich's theorem

October 15, 2012

86% Match
Dmitriy Frolenkov, Igor D. Kan
Number Theory

Zaremba's conjecture (1971) states that every positive integer number $d$ can be represented as a denominator (continuant) of a finite continued fraction $\frac{b}{d}=[d_1,d_2,...,d_{k}],$ whose partial quotients $d_1,d_2,...,d_{k}$ belong to a finite alphabet $\A\subseteq\N.$ In this paper it is proved for an alphabet $\A,$ such that the Hausdorff dimension $\delta_{\A}$ of the set of infinite continued fractions whose partial quotients belong to $\A,$ that the set of number...

Find SimilarView on arXiv

Radical bound for Zaremba's conjecture

October 15, 2023

86% Match
Nikita Shulga
Number Theory

Famous Zaremba's conjecture (1971) states that for each positive integer $q\geq2$, there exists positive integer $1\leq a <q$, coprime to $q$, such that if you expand a fraction $a/q$ into a continued fraction $a/q=[a_1,\ldots,a_n]$, all of the coefficients $a_i$'s are bounded by some absolute constant $\mathfrak k$, independent of $q$. Zaremba conjectured that this should hold for $\mathfrak k=5$. In 1986, Niederreiter proved Zaremba's conjecture for numbers of the form $q=2...

Find SimilarView on arXiv

A strengthening of a theorem of Bourgain-Kontorovich-V

April 17, 2016

86% Match
I. D. Kan
Number Theory

Zaremba's conjecture (1971) states that every positive integer number $d$ can be represented as a denominator (continuant) of a finite continued fraction $\frac{b}{d}=[d_1,d_2,\ldots,d_{k}],$ with all partial quotients $d_1,d_2,\ldots,d_{k}$ being bounded by an absolute constant $A.$ Recently (in 2011) several new theorems concerning this conjecture were proved by Bourgain and Kontorovich. The easiest of them states that the set of numbers satisfying Zaremba's conjecture with...

Find SimilarView on arXiv

An Analytic Heuristic for Multiplicity Computation for Zaremba's Conjecture

August 31, 2016

85% Match
Peter Cohen
Number Theory

Zaremba's Conjecture concerns the formation of continued fractions with partial quotients restricted to a given alphabet. In order to answer the numerous questions that arrive from this conjecture, it is best to consider a semi-group, often denoted $\Gamma_{A}$, which arises naturally as a subset of $SL_2(\mathbb{Z})$ when considering finite continued fractions. To translate back from this semi-group into rational numbers, we select a projection mapping satisfying certain cri...

Find SimilarView on arXiv