March 29, 2011
We study the synchronous stochastic dynamics of the random field and random bond Ising chain. For this model the generating functional analysis methods of De Dominicis leads to a formalism with transfer operators, similar to transfer matrices in equilibrium studies, but with dynamical paths of spins and (conjugate) fields as arguments, as opposed to replicated spins. In the thermodynamic limit the macroscopic dynamics is captured by the dominant eigenspace of the transfer operator, leading to a relative simple and transparent set of equations that are easy to solve numerically. Our results are supported excellently by numerical simulations.
Similar papers 1
We study the dynamics of bond-disordered Ising spin systems on random graphs with finite connectivity, using generating functional analysis. Rather than disorder-averaged correlation and response functions (as for fully connected systems), the dynamic order parameter is here a measure which represents the disorder averaged single-spin path probabilities, given external perturbation field paths. In the limit of completely asymmetric graphs our macroscopic laws close already in...
We present an alternative procedure for solving the eigenvalue problem of replicated transfer matrices describing disordered spin systems with (random) 1D nearest neighbor bonds and/or random fields, possibly in combination with (random) long range bonds. Our method is based on transforming the original eigenvalue problem for a $2^n\times 2^n$ matrix (where $n\to 0$) into an eigenvalue problem for integral operators. We first develop our formalism for the Ising chain with ran...
We study the stochastic parallel dynamics of Ising spin systems defined on finitely connected directed random graphs with arbitrary degree distributions, using generating functional analysis. For fully asymmetric graphs the dynamics of the system can be completely solved, due to the asymptotic absence of loops. For arbitrary graph symmetry, we solve the dynamics exactly for the first few time steps, and we construct approximate stationary solutions.
July 25, 2019
The aim of this work is to present a formulation to solve the one-dimensional Ising model using the elementary technique of mathematical induction. This formulation is physically clear and leads to the same partition function form as the transfer matrix method, which is a common subject in the introductory courses of statistical mechanics. In this way our formulation is a useful tool to complement the traditional more abstract transfer matrix method. The method can be straigh...
We study numerically the critical region and the disordered phase of the random transverse-field Ising chain. By using a mapping of Lieb, Schultz and Mattis to non-interacting fermions, we can obtain a numerically exact solution for rather large system sizes, $L \le 128$. Our results confirm the striking predictions of earlier analytical work and, in addition, give new results for some probability distributions and scaling functions.
October 31, 1994
Contents: A. Introduction B. High Temperature Expansions for the Ising Model C. Characteristic Functions and Cumulants D. The One Dimensional Chain E. Directed Paths and the Transfer Matrix F. Moments of the Correlation Function G. The Probability Distribution in Two Dimensions H. Higher Dimensions I. Random Signs J. Other Realizations of DPRM K. Quantum Interference of Strongly Localized Electrons L. The Locator Expansion and Forward Scattering Paths ...
September 19, 2020
We present here various techniques to work with clean and disordered quantum Ising chains, for the benefit of students and non-experts. Starting from the Jordan-Wigner transformation, which maps spin-1/2 systems into fermionic ones, we review some of the basic approaches to deal with the superconducting correlations that naturally emerge in this context. In particular, we analyse the form of the ground state and excitations of the model, relating them to the symmetry-breaking...
We consider the stationary state properties of the reduced density matrix as well as spin-spin correlation functions after a sudden quantum quench of the magnetic field in the transverse field Ising chain. We demonstrate that stationary state properties are described by a generalized Gibbs ensemble. We discuss the approach to the stationary state at late times.
November 13, 2006
The aim of this article is to give a pedagogical introduction to the exact equilibrium and nonequilibrium properties of free fermionic quantum spin chains. In a first part we present in full details the canonical diagonalisation procedure and review quickly the equilibrium dynamical properties. The phase diagram is analysed and possible phase transitions are discussed. The two next chapters are concerned with the effect of aperiodicity and quenched disorder on the critical pr...
April 13, 1993
We study the use of effective transfer matrices for the numerical computation of masses (or correlation lengths) in lattice spin models. The effective transfer matrix has a strongly reduced number of components. Its definition is motivated by a renormalization group transformation of the full model onto a 1-dimensional spin model. The matrix elements of the effective transfer matrix can be determined by Monte Carlo simulation. We show that the mass gap can be recovered exactl...