September 10, 2009
In this paper, we study tropicalisations of families of curves with a singularity in a fixed point. The tropicalisation of such a family is a linear tropical variety. We describe its maximal dimensional cones using results about linear tropical varieties from Ardila and Klivans and from Feichtner and Sturmfels. We show that a singularity tropicalises either to a vertex of higher valence or of higher multiplicity, or to an edge of higher weight. We then classify maximal dimens...
December 8, 2016
We give an overview of recently implemented polymake features for computations in tropical geometry. The main focus is on explicit examples rather than technical explanations. Our computations employ tropical hypersurfaces, moduli of tropical plane curves, tropical linear spaces and Grassmannians, lines on tropical cubic surfaces as well as intersection rings of matroids
April 23, 2008
We find restrictions on the topology of tropical varieties that arise from a certain natural class of varieties. We develop a theory of tropical degenerations that is a nonconstant coefficient analogue of Tevelev's theory of tropical compactifications, and use it to construct normal crossings degenerations of a subvariety X of a torus, under mild hypotheses on X. These degenerations allow us to construct a natural, "multiplicity-free" parameterization of Trop(X) by a topologi...
December 1, 2009
In this article we study the tropicalization of the Hilbert scheme and its suitability as a parameter space for tropical varieties. We prove that the points of the tropicalization of the Hilbert scheme have a tropical variety naturally associated to them. To prove this, we find a bound on the degree of the elements of a tropical basis of an ideal in terms of its Hilbert polynomial. As corollary, we prove that the set of tropical varieties defined over an algebraically close...
September 10, 2018
We introduce the notion of tropical defects, certificates that a system of polynomial equations is not a tropical basis, and provide two algorithms for finding them in affine spaces of complementary dimension to the zero set. We use these techniques to solve open problems regarding del Pezzo surfaces of degree 3 and realizability of valuated gaussoids on 4 elements.
August 7, 2014
This article discusses the concept of rational equivalence in tropical geometry (and replaces the older and imperfect version arXiv:0811.2860). We give the basic definitions in the context of tropical varieties without boundary points and prove some basic properties. We then compute the "bounded" Chow groups of $\mathbb{R}^n$ by showing that they are isomorphic to the group of fan cycles. The main step in the proof is of independent interest: We show that every tropical cycle...
May 22, 2017
We describe a framework to construct tropical moduli spaces of rational stable maps to a smooth tropical hypersurface or curve. These moduli spaces will be tropical cycles of the expected dimension, corresponding to virtual fundamental classes in algebraic geometry. As we focus on the combinatorial aspect, we take the weights on certain basic 0-dimensional local combinatorial curve types as input data, and give a compatibility condition in dimension 1 to ensure that this inpu...
May 19, 2010
The first secant variety of a projective monomial curve is a threefold with an action by a one-dimensional torus. Its tropicalization is a three-dimensional fan with a one-dimensional lineality space, so the tropical threefold is represented by a balanced graph. Our main result is an explicit construction of that graph. As a consequence, we obtain algorithms to effectively compute the multidegree and Chow polytope of an arbitrary projective monomial curve. This generalizes an...
August 21, 2012
In this paper we study algorithmic aspects of tropical intersection theory. We analyse how divisors and intersection products on tropical cycles can actually be computed using polyhedral geometry. The main focus of this paper is the study of moduli spaces, where the underlying combinatorics of the varieties involved allow a much more efficient way of computing certain tropical cycles. The algorithms discussed here have been implemented in an extension for polymake, a software...
April 12, 2017
We contribute to the foundations of tropical geometry with a view towards formulating tropical moduli problems, and with the moduli space of curves as our main example. We propose a moduli functor for the moduli space of curves and show that it is representable by a geometric stack over the category of rational polyhedral cones. In this framework the natural forgetful morphisms between moduli spaces of curves with marked points function as universal curves. Our approach to tr...