ID: 1105.3146

A thermodynamical perspective of immune capabilities

May 16, 2011

View on ArXiv
Elena Agliari, Adriano Barra, Francesco Guerra, Francesco Moauro
Physics
Condensed Matter
Quantitative Biology
Biological Physics
Disordered Systems and Neura...
Cell Behavior

We consider the mutual interactions, via cytokine exchanges, among helper lymphocytes, B lymphocytes and killer lymphocytes, and we model them as a unique system by means of a tripartite network. Each part includes all the different clones of the same lymphatic subpopulation, whose couplings to the others are either excitatory or inhibitory (mirroring elicitation and suppression by cytokine). First of all, we show that this system can be mapped into an associative neural network, where helper cells directly interact with each other and are able to secrete cytokines according to "strategies" learnt by the system and profitable to cope with possible antigenic stimulation; the ability of such a retrieval corresponds to a healthy reaction of the immune system. We then investigate the possible conditions for the failure of a correct retrieval and distinguish between the following outcomes: massive lymphocyte expansion/suppression (e.g. lymphoproliferative syndromes), subpopulation unbalance (e.g. HIV, EBV infections) and ageing (thought of as noise growth); the correlation of such states to auto-immune diseases is also highlighted. Lastly, we discuss how self-regulatory effects within each effector branch (i.e. B and killer lymphocytes) can be modeled in terms of a stochastic process, ultimately providing a consistent bridge between the tripartite-network approach introduced here and the immune networks developed in the last decades.

Similar papers 1

A statistical mechanics approach to autopoietic immune networks

January 21, 2010

90% Match
Adriano Barra, Elena Agliari
Disordered Systems and Neura...
Statistical Mechanics
Cell Behavior

The aim of this work is to try to bridge over theoretical immunology and disordered statistical mechanics. Our long term hope is to contribute to the development of a quantitative theoretical immunology from which practical applications may stem. In order to make theoretical immunology appealing to the statistical physicist audience we are going to work out a research article which, from one side, may hopefully act as a benchmark for future improvements and developments, from...

Find SimilarView on arXiv

Some thoughts on the ontogenesis in B-cell immune networks

December 9, 2010

89% Match
Adriano Barra, Silvio Franz, Thiago Sabetta
Cell Behavior
Biological Physics

We are interested in modeling theoretical immunology within a statistical mechanics flavor: focusing on the antigen-independent maturation process of B-cells, in this paper we try to revise the problem of self vs non-self discrimination by mature B lymphocytes. We consider only B lymphocytes: despite this is of course an oversimplification, however such a toy model may help to highlight features of their interactions otherwise shadowed by main driven mechanisms due to i.e. he...

Find SimilarView on arXiv
Elena Agliari, Alessia Annibale, Adriano Barra, ... , Tantari Daniele
Disordered Systems and Neura...
Cell Behavior

Associative network models featuring multi-tasking properties have been introduced recently and studied in the low load regime, where the number $P$ of simultaneously retrievable patterns scales with the number $N$ of nodes as $P\sim \log N$. In addition to their relevance in artificial intelligence, these models are increasingly important in immunology, where stored patterns represent strategies to fight pathogens and nodes represent lymphocyte clones. They allow us to under...

Parallel processing in immune networks

February 25, 2012

89% Match
Elena Agliari, Adriano Barra, Silvia Bartolucci, Andrea Galluzzi, ... , Moauro Francesco
Cell Behavior
Disordered Systems and Neura...
Statistical Mechanics
Biological Physics

In this work we adopt a statistical mechanics approach to investigate basic, systemic features exhibited by adaptive immune systems. The lymphocyte network made by B-cells and T-cells is modeled by a bipartite spin-glass, where, following biological prescriptions, links connecting B-cells and T-cells are sparse. Interestingly, the dilution performed on links is shown to make the system able to orchestrate parallel strategies to fight several pathogens at the same time; this m...

Find SimilarView on arXiv

Understanding how T helper cells learn to coordinate effective immune responses through the lens of reinforcement learning

April 11, 2019

88% Match
Takuya Kato, Tetsuya J. Kobayashi
Populations and Evolution

The adaptive immune system of vertebrates can detect, respond to, and memorize diverse pathogens from past experience. While the clonal selection of T helper (Th) cells is the simple and established mechanism to better recognize new pathogens, the question that still remains unexplored is how the Th cells can acquire better ways to bias the responses of immune cells for eliminating pathogens more efficiently by translating the recognized antigen information into regulatory si...

Find SimilarView on arXiv

Understanding and Modelling the Complexity of the Immune System: Systems Biology for Integration and Dynamical Reconstruction of Lymphocyte Multi-Scale Dynamics

August 26, 2020

88% Match
Véronique CNRS Thomas-Vaslin
Quantitative Methods

Understanding and modelling the complexity of the immune system is a challenge that is shared by the ImmunoComplexiT$^1$ thematic network from the RNSC. The immune system is a complex biological, adaptive, highly diversified, self-organized and degenerative cognitive network of entities, allowing for a robust and resilient system with emergent properties such as anamnestic responses and regulation. The adaptive immune system has evolved into a complex system of billions of hi...

Find SimilarView on arXiv

Complex physical properties of an adaptive, self-organizing biological system

July 28, 2021

88% Match
Jozsef Prechl
Molecular Networks

The physical interpretation of the functioning of the adaptive immune system, which has been thoroughly characterized on genetic and molecular levels, provides a unique opportunity to define an adaptive self-organizing biological system in its entirety. This paper describes a configuration space model of immune function, where directed chemical potentials of the system constitute a space of interactions. In the physical sense, the humoral adaptive immune system adjusts the ch...

Find SimilarView on arXiv

Quantitative Immunology for Physicists

July 8, 2019

87% Match
Grégoire Altan-Bonnet, Thierry Mora, Aleksandra M. Walczak
Quantitative Methods
Genomics
Molecular Networks
Subcellular Processes

The adaptive immune system is a dynamical, self-organized multiscale system that protects vertebrates from both pathogens and internal irregularities, such as tumours. For these reason it fascinates physicists, yet the multitude of different cells, molecules and sub-systems is often also petrifying. Despite this complexity, as experiments on different scales of the adaptive immune system become more quantitative, many physicists have made both theoretical and experimental con...

Find SimilarView on arXiv

Retrieving Infinite Numbers of Patterns in a Spin-Glass Model of Immune Networks

May 9, 2013

87% Match
Elena Agliari, Alessia Annibale, Adriano Barra, ... , Tantari Daniele
Disordered Systems and Neura...
Biological Physics
Cell Behavior

The similarity between neural and immune networks has been known for decades, but so far we did not understand the mechanism that allows the immune system, unlike associative neural networks, to recall and execute a large number of memorized defense strategies {\em in parallel}. The explanation turns out to lie in the network topology. Neurons interact typically with a large number of other neurons, whereas interactions among lymphocytes in immune networks are very specific, ...

Find SimilarView on arXiv

Anergy in self-directed B lymphocytes from a statistical mechanics perspective

December 10, 2012

87% Match
Elena Agliari, Adriano Barra, Ferraro Gino Del, ... , Tantari Daniele
Biological Physics
Disordered Systems and Neura...
Cell Behavior

The ability of the adaptive immune system to discriminate between self and non-self mainly stems from the ontogenic clonal-deletion of lymphocytes expressing strong binding affinity with self-peptides. However, some self-directed lymphocytes may evade selection and still be harmless due to a mechanism called clonal anergy. As for B lymphocytes, two major explanations for anergy developed over three decades: according to "Varela theory", it stems from a proper orchestration of...

Find SimilarView on arXiv