March 19, 2024
We investigate the behaviour of $r$-neighbourhood bootstrap percolation on the binomial $k$-uniform random hypergraph $H_k(n,p)$ for given integers $k\geq 2$ and $r\geq 2$. In $r$-neighbourhood bootstrap percolation, infection spreads through the hypergraph, starting from a set of initially infected vertices, and in each subsequent step of the process every vertex with at least $r$ infected neighbours becomes infected. For our analysis the set of initially infected vertices i...
February 13, 2007
In majority bootstrap percolation on a graph G, an infection spreads according to the following deterministic rule: if at least half of the neighbours of a vertex v are already infected, then v is also infected, and infected vertices remain infected forever. Percolation occurs if eventually every vertex is infected. The elements of the set of initially infected vertices, A \subset V(G), are normally chosen independently at random, each with probability p, say. This process ...
April 29, 2019
A graph $G$ percolates in the $K_{r,s}$-bootstrap process if we can add all missing edges of $G$ in some order such that each edge creates a new copy of $K_{r,s}$, where $K_{r,s}$ is the complete bipartite graph. We study $K_{r,s}$-bootstrap percolation on the Erd\H{o}s-R\'{e}nyi random graph, and determine the percolation threshold for balanced $K_{r,s}$ up to a logarithmic factor. This partially answers a question raised by Balogh, Bollob\'as, and Morris. We also establish ...
May 29, 2015
Bootstrap percolation is a type of cellular automaton on graphs, introduced as a simple model of the dynamics of ferromagnetism. Vertices in a graph can be in one of two states: `healthy' or `infected' and from an initial configuration of states, healthy vertices become infected by local rules. While the usual bootstrap processes are monotone in the sets of infected vertices, in this paper, a modification is examined in which infected vertices can return to a healthy state. V...
October 16, 2010
In r-neighbour bootstrap percolation on a graph G, a (typically random) set A of initially 'infected' vertices spreads by infecting (at each time step) vertices with at least r already-infected neighbours. This process may be viewed as a monotone version of the Glauber dynamics of the Ising model, and has been extensively studied on the d-dimensional grid $[n]^d$. The elements of the set A are usually chosen independently, with some density p, and the main question is to dete...
May 10, 2016
Bootstrap percolation on a graph with infection threshold $r\in \mathbb{N}$ is an infection process, which starts from a set of initially infected vertices and in each step every vertex with at least $r$ infected neighbours becomes infected. We consider bootstrap percolation on the binomial random graph $G(n,p)$, which was investigated among others by Janson, \L uczak, Turova and Valier (2012). We improve their results by strengthening the probability bounds for the number of...
May 17, 2012
In r-neighbour bootstrap percolation on the vertex set of a graph G, vertices are initially infected independently with some probability p. At each time step, the infected set expands by infecting all uninfected vertices that have at least r infected neighbours. We study the distribution of the time t at which all vertices become infected. Given t = t(n) = o(log n/log log n), we prove a sharp threshold result for the probability that percolation occurs by time t in d-neighbou...
April 24, 2017
We investigate bootstrap percolation with infection threshold $r> 1$ on the binomial $k$-uniform random hypergraph $H_k(n,p)$ in the regime $n^{-1}\ll n^{k-2}p \ll n^{-1/r}$, when the initial set of infected vertices is chosen uniformly at random from all sets of given size. We establish a threshold such that if there are less vertices in the initial set of infected vertices, then whp only a few additional vertices become infected, while if the initial set of infected vertice...
June 15, 2015
The $r$-neighbour bootstrap percolation process on a graph $G$ starts with an initial set $A_0$ of "infected" vertices and, at each step of the process, a healthy vertex becomes infected if it has at least $r$ infected neighbours (once a vertex becomes infected, it remains infected forever). If every vertex of $G$ eventually becomes infected, then we say that $A_0$ percolates. We prove a conjecture of Balogh and Bollob\'as which says that, for fixed $r$ and $d\to\infty$, ev...
December 30, 2024
We consider the $r$-neighbor bootstrap percolation process on the graph with vertex set $V=\{0,1\}^n$ and edges connecting the pairs at Hamming distance $1,2,\dots,k$, where $k\ge 2$. We find asymptotics of the critical probability of percolation for $r=2,3$. In the deterministic setting, we obtain several results for the size of the smallest percolating set for $k\ge 2$, including the exact values for $k=2$ and $2\le r\le 6$.