September 14, 2011
Similar papers 4
July 17, 2012
The proliferation of models for networks raises challenging problems of model selection: the data are sparse and globally dependent, and models are typically high-dimensional and have large numbers of latent variables. Together, these issues mean that the usual model-selection criteria do not work properly for networks. We illustrate these challenges, and show one way to resolve them, by considering the key network-analysis problem of dividing a graph into communities or bloc...
June 7, 2016
We demonstrate an exact equivalence between two widely used methods of community detection in networks, the method of modularity maximization in its generalized form which incorporates a resolution parameter controlling the size of the communities discovered, and the method of maximum likelihood applied to the special case of the stochastic block model known as the planted partition model, in which all communities in a network are assumed to have statistically similar propert...
February 19, 2015
We consider a random sparse graph with bounded average degree, in which a subset of vertices has higher connectivity than the background. In particular, the average degree inside this subset of vertices is larger than outside (but still bounded). Given a realization of such graph, we aim at identifying the hidden subset of vertices. This can be regarded as a model for the problem of finding a tightly knitted community in a social network, or a cluster in a relational dataset....
January 26, 2021
Many statistical inference problems correspond to recovering the values of a set of hidden variables from sparse observations on them. For instance, in a planted constraint satisfaction problem such as planted 3-SAT, the clauses are sparse observations from which the hidden assignment is to be recovered. In the problem of community detection in a stochastic block model, the community labels are hidden variables that are to be recovered from the edges of the graph. Inspired ...
July 29, 2019
Mean-field variational inference (MFVI) has been widely applied in large scale Bayesian inference. However MFVI, which assumes a product distribution on the latent variables, often leads to objective functions with many local optima, making optimization algorithms sensitive to initialization. In this paper, we study the advantage of structured variational inference for the two class Stochastic Blockmodel. The variational distribution is constructed to have pairwise dependency...
November 12, 2013
Community detection in networks is a key exploratory tool with applications in a diverse set of areas, ranging from finding communities in social and biological networks to identifying link farms in the World Wide Web. The problem of finding communities or clusters in a network has received much attention from statistics, physics and computer science. However, most clustering algorithms assume knowledge of the number of clusters k. In this paper we propose to automatically de...
May 29, 2017
This chapter provides a self-contained introduction to the use of Bayesian inference to extract large-scale modular structures from network data, based on the stochastic blockmodel (SBM), as well as its degree-corrected and overlapping generalizations. We focus on nonparametric formulations that allow their inference in a manner that prevents overfitting, and enables model selection. We discuss aspects of the choice of priors, in particular how to avoid underfitting via incre...
December 28, 2015
The stochastic block model (SBM) is a popular framework for studying community detection in networks. This model is limited by the assumption that all nodes in the same community are statistically equivalent and have equal expected degrees. The degree-corrected stochastic block model (DCSBM) is a natural extension of SBM that allows for degree heterogeneity within communities. This paper proposes a convexified modularity maximization approach for estimating the hidden communi...
April 18, 2006
We express community detection as an inference problem of determining the most likely arrangement of communities. We then apply belief propagation and mean-field theory to this problem, and show that this leads to fast, accurate algorithms for community detection.
August 13, 2019
Modularity based community detection encompasses a number of widely used, efficient heuristics for identification of structure in networks. Recently, a belief propagation approach to modularity optimization provided a useful guide for identifying non-trivial structure in single-layer networks in a way that other optimization heuristics have not. In this paper, we extend modularity belief propagation to multilayer networks. As part of this development, we also directly incorpo...