September 21, 2011
The interactions between the components of complex networks are often directed. Proper modeling of such systems frequently requires the construction of ensembles of digraphs with a given sequence of in- and out-degrees. As the number of simple labeled graphs with a given degree sequence is typically very large even for short sequences, sampling methods are needed for statistical studies. Currently, there are two main classes of methods that generate samples. One of the existing methods first generates a restricted class of graphs, then uses a Markov Chain Monte-Carlo algorithm based on edge swaps to generate other realizations. As the mixing time of this process is still unknown, the independence of the samples is not well controlled. The other class of methods is based on the Configuration Model that may lead to unacceptably many sample rejections due to self-loops and multiple edges. Here we present an algorithm that can directly construct all possible realizations of a given bi-degree sequence by simple digraphs. Our method is rejection free, guarantees the independence of the constructed samples, and provides their weight. The weights can then be used to compute statistical averages of network observables as if they were obtained from uniformly distributed sampling, or from any other chosen distribution.
Similar papers 1
February 15, 2010
Uniform sampling from graphical realizations of a given degree sequence is a fundamental component in simulation-based measurements of network observables, with applications ranging from epidemics, through social networks to Internet modeling. Existing graph sampling methods are either link-swap based (Markov-Chain Monte Carlo algorithms) or stub-matching based (the Configuration Model). Both types are ill-controlled, with typically unknown mixing times for link-swap methods ...
January 13, 2022
Graphs are used in many disciplines to model the relationships that exist between objects in a complex discrete system. Researchers may wish to compare a network of interest to a "typical" graph from a family (or ensemble) of graphs which are similar in some way. One way to do this is to take a sample of several random graphs from the family, to gather information about what is "typical". Hence there is a need for algorithms which can generate graphs uniformly (or approximate...
March 23, 2015
Many real-world networks exhibit correlations between the node degrees. For instance, in social networks nodes tend to connect to nodes of similar degree. Conversely, in biological and technological networks, high-degree nodes tend to be linked with low-degree nodes. Degree correlations also affect the dynamics of processes supported by a network structure, such as the spread of opinions or epidemics. The proper modelling of these systems, i.e., without uncontrolled biases, r...
September 8, 2020
We describe a new method for the random sampling of connected networks with a specified degree sequence. We consider both the case of simple graphs and that of loopless multigraphs. The constraints of fixed degrees and of connectedness are two of the most commonly needed ones when constructing null models for the practical analysis of physical or biological networks. Yet handling these constraints, let alone combining them, is non-trivial. Our method builds on a recently intr...
March 24, 2011
One of the most influential recent results in network analysis is that many natural networks exhibit a power-law or log-normal degree distribution. This has inspired numerous generative models that match this property. However, more recent work has shown that while these generative models do have the right degree distribution, they are not good models for real life networks due to their differences on other important metrics like conductance. We believe this is, in part, beca...
July 10, 2012
Given two distributions F and G on the nonnegative integers we propose an algorithm to construct in- and out-degree sequences from samples of i.i.d. observations from F and G, respectively, that with high probability will be graphical, that is, from which a simple directed graph can be drawn. We then analyze a directed version of the configuration model and show that, provided that F and G have finite variance, the probability of obtaining a simple graph is bounded away from ...
December 3, 2009
Many applications in network analysis require algorithms to sample uniformly at random from the set of all graphs with a prescribed degree sequence. We present a Markov chain based approach which converges to the uniform distribution of all realizations for both the directed and undirected case. It remains an open challenge whether these Markov chains are rapidly mixing. For the case of directed graphs, we also explain in this paper that a popular switching algorithm fails ...
March 29, 2021
Uniform sampling of simple graphs having a given degree sequence is a known problem with exponential complexity in the square of the mean degree. For undirected graphs, randomised approximation algorithms have nonetheless been shown to achieve almost linear expected complexity for this problem. Here we discuss the sequential stub matching for directed graphs and show that this process can be mould to sample simple digraphs with asymptotically equal probability. The process st...
October 2, 2018
The focus of this work is on estimation of the in-degree distribution in directed networks from sampling network nodes or edges. A number of sampling schemes are considered, including random sampling with and without replacement, and several approaches based on random walks with possible jumps. When sampling nodes, it is assumed that only the out-edges of that node are visible, that is, the in-degree of that node is not observed. The suggested estimation of the in-degree dist...
February 22, 2005
We address here the problem of generating random graphs uniformly from the set of simple connected graphs having a prescribed degree sequence. Our goal is to provide an algorithm designed for practical use both because of its ability to generate very large graphs (efficiency) and because it is easy to implement (simplicity). We focus on a family of heuristics for which we prove optimality conditions, and show how this optimality can be reached in practice. We then propose a d...