November 11, 1997
I review my work together with Piljin Yi on the spectrum of BPS-saturated states in N = 2 supersymmetric Yang-Mills theories. In an M-theory description, such states are realized as certain two-brane configurations. We first show how the central charge of the N = 2 algebra arises from the two-form central charge of the eleven-dimensional supersymmetry algebra, and derive the condition for a two-brane configuration to be BPS-saturated. We then discuss how the topology of the t...
July 10, 2012
We study systematically the BPS spectra of N=2 SYM coupled to half--hypermultiplets, the basic example being E_7 SYM coupled to a half--hyper in the 56 irrepr. In order to do this, we determine the BPS quivers with superpotential of such N=2 models using a new technique we introduce. The computation of the BPS spectra in the various chambers is then reduced to the Representation Theory of the resulting quivers. We use the quiver description to study the BPS spectrum at both s...
June 14, 2000
We describe a simple method for determining the strong-coupling BPS spectrum of four dimensional N=2 supersymmetric Yang-Mills theory. The idea is to represent the magnetic monopoles and dyons in terms of D-brane boundary states of a non-compact d=2 N=2 Landau-Ginzburg model. In this way the quantum truncated BPS spectrum at the origin of the moduli space can be directly mapped to the finite number of primary fields of the superconformal minimal models.
August 30, 2013
We study BPS line defects in N=2 supersymmetric four-dimensional field theories. We focus on theories of "quiver type," those for which the BPS particle spectrum can be computed using quiver quantum mechanics. For a wide class of models, the renormalization group flow between defects defined in the ultraviolet and in the infrared is bijective. Using this fact, we propose a way to compute the BPS Hilbert space of a defect defined in the ultraviolet, using only infrared data. I...
April 28, 2009
We study the gauge/gravity duality for theories with four dimensional ${\cal N}=2$ supersymmetries. We consider the large class of generalized quiver field theories constructed recently by one of us (D.G.). These field theories can also be viewed as the IR limit of M5 branes wrapping a Riemann surface with punctures. We give a prescription for constructing the corresponding geometries and we discuss a few special cases in detail. There is a precise match for various quantitie...
April 26, 2013
The BPS state spectrum in four-dimensional gauge theories or string vacua with N=2 supersymmetries is well known to depend on the values of the parameters or moduli at spatial infinity. The BPS index is locally constant, but discontinuous across real codimension-one walls where some of the BPS states decay. By postulating that BPS states are bound states of more elementary constituents carrying their own degrees of freedom and interacting via supersymmetric quantum mechanics,...
April 13, 2017
We define "BPS graphs" on punctured Riemann surfaces associated with $A_{N-1}$ theories of class $\mathcal{S}$. BPS graphs provide a bridge between two powerful frameworks for studying the spectrum of BPS states: spectral networks and BPS quivers. They arise from degenerate spectral networks at maximal intersections of walls of marginal stability on the Coulomb branch. While the BPS spectrum is ill-defined at such intersections, a BPS graph captures a useful basis of elementa...
August 1, 2020
We study the correspondence between AdS$_3$ massive IIA supergravity vacua and two-dimensional $\mathcal{N}=(0,4)$ quiver quantum field theories. After categorizing all kinds of gravity solutions, we demystify the ones that seem to reflect anomalous gauge theories. In particular, we prove that there are bound states of D-branes on the boundary of the space which provide the dual quiver theory with exactly the correct amount of flavor symmetry in order to cancel its gauge anom...
May 27, 2020
We introduce and explore the relation between quivers and 3-manifolds with the topology of the knot complement. This idea can be viewed as an adaptation of the knots-quivers correspondence to Gukov-Manolescu invariants of knot complements (also known as $F_K$ or $\hat{Z}$). Apart from assigning quivers to complements of $T^{(2,2p+1)}$ torus knots, we study the physical interpretation in terms of the BPS spectrum and general structure of 3d $\mathcal{N}=2$ theories associated ...
August 4, 2014
We exactly evaluate the partition function (index) of N=4 supersymmetric quiver quantum mechanics in the Higgs phase by using the localization techniques. We show that the path integral is localized at the fixed points, which are obtained by solving the BRST equations, and D-term and F-term conditions. We turn on background gauge fields of R-symmetries for the chiral multiplets corresponding to the arrows between quiver nodes, but the partition function does not depend on the...