December 20, 2011
Similar papers 3
August 4, 2008
We propose a Markov chain simulation method to generate simple connected random graphs with a specified degree sequence and level of clustering. The networks generated by our algorithm are random in all other respects and can thus serve as generic models for studying the impacts of degree distributions and clustering on dynamical processes as well as null models for detecting other structural properties in empirical networks.
November 14, 2018
In many domains it is necessary to generate surrogate networks, e.g., for hypothesis testing of different properties of a network. Furthermore, generating surrogate networks typically requires that different properties of the network is preserved, e.g., edges may not be added or deleted and the edge weights may be restricted to certain intervals. In this paper we introduce a novel efficient property-preserving Markov Chain Monte Carlo method termed CycleSampler for generating...
July 24, 2007
We introduce and study a class of exchangeable random graph ensembles. They can be used as statistical null models for empirical networks, and as a tool for theoretical investigations. We provide general theorems that carachterize the degree distribution of the ensemble graphs, together with some features that are important for applications, such as subgraph distributions and kernel of the adjacency matrix. These results are used to compare to other models of simple and compl...
August 30, 2007
Random networks are intensively used as null models to investigate properties of complex networks. We describe an efficient and accurate algorithm to generate arbitrarily two-point correlated undirected random networks without self- or multiple-edges among vertices. With the goal to systematically investigate the influence of two-point correlations, we furthermore develop a formalism to construct a joint degree distribution $P(j,k)$ which allows to fix an arbitrary degree dis...
September 8, 2020
We describe a new method for the random sampling of connected networks with a specified degree sequence. We consider both the case of simple graphs and that of loopless multigraphs. The constraints of fixed degrees and of connectedness are two of the most commonly needed ones when constructing null models for the practical analysis of physical or biological networks. Yet handling these constraints, let alone combining them, is non-trivial. Our method builds on a recently intr...
October 19, 2012
Degree distributions are arguably the most important property of real world networks. The classic edge configuration model or Chung-Lu model can generate an undirected graph with any desired degree distribution. This serves as a good null model to compare algorithms or perform experimental studies. Furthermore, there are scalable algorithms that implement these models and they are invaluable in the study of graphs. However, networks in the real-world are often directed, and h...
September 19, 2019
We study the expected adjacency matrix of a uniformly random multigraph with fixed degree sequence $\mathbf{d} \in \mathbb{Z}_+^n$. This matrix arises in a variety of analyses of networked data sets, including modularity-maximization and mean-field theories of spreading processes. Its structure is well-understood for large, sparse, simple graphs: the expected number of edges between nodes $i$ and $j$ is roughly $\frac{d_id_j}{\sum_\ell{d_\ell}}$. Many network data sets are ne...
May 25, 2021
The configuration model is a standard tool for uniformly generating random graphs with a specified degree sequence, and is often used as a null model to evaluate how much of an observed network's structure can be explained by its degree structure alone. A Markov chain Monte Carlo (MCMC) algorithm, based on a degree-preserving double-edge swap, provides an asymptotic solution to sample from the configuration model. However, accurately and efficiently detecting this Markov chai...
October 17, 2007
Random networks are widely used to model complex networks and research their properties. In order to get a good approximation of complex networks encountered in various disciplines of science, the ability to tune various statistical properties of random networks is very important. In this manuscript we present an algorithm which is able to construct arbitrarily degree-degree correlated networks with adjustable degree-dependent clustering. We verify the algorithm by using empi...
September 23, 2015
Let $F$ be a probability distribution with support on the non-negative integers. Four methods for generating a simple undirected graph with (approximate) degree distribution $F$ are described and compared. Two methods are based on the so called configuration model with modifications ensuring a simple graph, one method is an extension of the classical Erd\H{o}s-R\'{e}nyi graph where the edge probabilities are random variables, and the last method starts with a directed random ...