January 3, 2012
We propose a Markov chain method to efficiently generate 'surrogate networks' that are random under the constraint of given vertex strengths. With these strength-preserving surrogates and with edge-weight-preserving surrogates we investigate the clustering coefficient and the average shortest path length of functional networks of the human brain as well as of the International Trade Networks. We demonstrate that surrogate networks can provide additional information about network-specific characteristics and thus help interpreting empirical weighted networks.
Similar papers 1
November 14, 2018
In many domains it is necessary to generate surrogate networks, e.g., for hypothesis testing of different properties of a network. Furthermore, generating surrogate networks typically requires that different properties of the network is preserved, e.g., edges may not be added or deleted and the edge weights may be restricted to certain intervals. In this paper we introduce a novel efficient property-preserving Markov Chain Monte Carlo method termed CycleSampler for generating...
March 7, 2011
Based on the misleading expectation that weighted network properties always offer a more complete description than purely topological ones, current economic models of the International Trade Network (ITN) generally aim at explaining local weighted properties, not local binary ones. Here we complement our analysis of the binary projections of the ITN by considering its weighted representations. We show that, unlike the binary case, all possible weighted representations of the ...
January 6, 2004
We propose a model for the growth of weighted networks that couples the establishment of new edges and vertices and the weights' dynamical evolution. The model is based on a simple weight-driven dynamics and generates networks exhibiting the statistical properties observed in several real-world systems. In particular, the model yields a non-trivial time evolution of vertices' properties and scale-free behavior for the weight, strength and degree distributions.
August 4, 2008
We propose a Markov chain simulation method to generate simple connected random graphs with a specified degree sequence and level of clustering. The networks generated by our algorithm are random in all other respects and can thus serve as generic models for studying the impacts of degree distributions and clustering on dynamical processes as well as null models for detecting other structural properties in empirical networks.
March 17, 2015
Within the last fifteen years, network theory has been successfully applied both to natural sciences and to socioeconomic disciplines. In particular, bipartite networks have been recognized to provide a particularly insightful representation of many systems, ranging from mutualistic networks in ecology to trade networks in economy, whence the need of a pattern detection-oriented analysis in order to identify statistically-significant structural properties. Such an analysis re...
June 18, 2013
Complex networks are now being studied in a wide range of disciplines across science and technology. In this paper we propose a method by which one can probe the properties of experimentally obtained network data. Rather than just measuring properties of a network inferred from data, we aim to ask how typical is that network? What properties of the observed network are typical of all such scale free networks, and which are peculiar? To do this we propose a series of methods t...
June 10, 2004
We present a general model for the growth of weighted networks in which the structural growth is coupled with the edges' weight dynamical evolution. The model is based on a simple weight-driven dynamics and a weights' reinforcement mechanism coupled to the local network growth. That coupling can be generalized in order to include the effect of additional randomness and non-linearities which can be present in real-world networks. The model generates weighted graphs exhibiting ...
May 17, 2004
We present an algorithm for generating random networks with arbitrary degree distribution and Clustering (frequency of triadic closure). We use this algorithm to generate networks with exponential, power law, and poisson degree distributions with variable levels of clustering. Such networks may be used as models of social networks and as a testable null hypothesis about network structure. Finally, we explore the effects of clustering on the point of the phase transition where...
December 7, 2010
Networks coming from protein-protein interactions, transcriptional regulation, signaling, or metabolism may appear to have "unusual" properties. To quantify this, it is appropriate to randomize the network and test the hypothesis that the network is not statistically different from expected in a motivated ensemble. However, when dealing with metabolic networks, the randomization of the network using edge exchange generates fictitious reactions that are biochemically meaningle...
August 3, 2009
We develop a simple theoretical framework for the evolution of weighted networks that is consistent with a number of stylized features of real-world data. In our framework, the Barabasi-Albert model of network evolution is extended by assuming that link weights evolve according to a geometric Brownian motion. Our model is verified by means of simulations and real world trade data. We show that the model correctly predicts the intensity and growth distribution of links, the si...