January 30, 2012
Similar papers 3
June 6, 2001
Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as random graphs, it is increasingly recognized that the topology and evolution of real networks is governed by robust organizing principles. Here we review the recent advances in the f...
May 21, 2015
In this paper we propose a methodology for deriving a model of a complex system by exploiting the information extracted from Topological Data Analysis. Central to our approach is the S[B] paradigm in which a complex system is represented by a two-level model. One level, the structural S one, is derived using the newly introduced quantitative concept of Persistent Entropy. The other level, the behavioral B one, is characterized by a network of interacting computational agents ...
May 3, 1993
A Cayley tree model of idiotypic networks that includes both B cell and antibody dynamics is formulated and analyzed. As in models with B cells only, localized states exist in the network with limited numbers of activated clones surrounded by virgin or near-virgin clones. The existence and stability of these localized network states are explored as a function of model parameters. As in previous models that have included antibody, the stability of immune and tolerant localized...
August 8, 2000
Biological systems, unlike physical or chemical systems, are characterized by the very inhomogeneous distribution of their components. The immune system, in particular, is notable for self-organizing its structure. Classically, the dynamics of natural systems have been described using differential equations. But, differential equation models fail to account for the emergence of large-scale inhomogeneities and for the influence of inhomogeneity on the overall dynamics of biolo...
December 5, 2007
Immune system is the most important defense system to resist human pathogens. In this paper we present an immune model with bipartite graphs theory. We collect data through COPE database and construct an immune cell- mediators network. The act degree distribution of this network is proved to be power-law, with index of 1.8. From our analysis, we found that some mediators with high degree are very important mediators in the process of regulating immune activity, such as TNF-al...
March 14, 2013
In this work we analyze the evolution of voluntary vaccination in networked populations by entangling the spreading dynamics of an influenza-like disease with an evolutionary framework taking place at the end of each influenza season so that individuals take or not the vaccine upon their previous experience. Our framework thus put in competition two well-known dynamical properties of scale-free networks: the fast propagation of diseases and the promotion of cooperative behavi...
January 14, 2017
Epidemic spreading on complex networks depends on the topological structure as well as on the dynamical properties of the infection itself. Generally speaking, highly connected individuals play the role of hubs and are crucial to channel information across the network. On the other hand, static topological quantities measuring the connectivity structure are independent on the dynamical mechanisms of the infection. A natural question is therefore how to improve the topological...
November 25, 1993
Network of nonlinear dynamical elements often show clustering of synchronization by chaotic instability. Relevance of the clustering to ecological, immune, neural, and cellular networks is discussed, with the emphasis of partially ordered states with chaotic itinerancy. First, clustering with bit structures in a hypercubic lattice is studied. Spontaneous formation and destruction of relevant bits are found, which give self-organizing, and chaotic genetic algorithms. When spon...
July 12, 2001
We present a detailed analytical and numerical study for the spreading of infections in complex population networks with acquired immunity. We show that the large connectivity fluctuations usually found in these networks strengthen considerably the incidence of epidemic outbreaks. Scale-free networks, which are characterized by diverging connectivity fluctuations, exhibit the lack of an epidemic threshold and always show a finite fraction of infected individuals. This particu...
July 3, 2001
Complex networks such as the sexual partnership web or the Internet often show a high degree of redundancy and heterogeneity in their connectivity properties. This peculiar connectivity provides an ideal environment for the spreading of infective agents. Here we show that the random uniform immunization of individuals does not lead to the eradication of infections in all complex networks. Namely, networks with scale-free properties do not acquire global immunity from major ep...