March 5, 2012
We analyze the properties of degree-preserving Markov chains based on elementary edge switchings in undirected and directed graphs. We give exact yet simple formulas for the mobility of a graph (the number of possible moves) in terms of its adjacency matrix. This formula allows us to define acceptance probabilities for edge switchings, such that the Markov chains become controlled Glauber-type detailed balance processes, designed to evolve to any required invariant measure (representing the asymptotic frequencies with which the allowed graphs are visited during the process).
Similar papers 1
May 26, 2009
We introduce a statistical mechanics formalism for the study of constrained graph evolution as a Markovian stochastic process, in analogy with that available for spin systems, deriving its basic properties and highlighting the role of the `mobility' (the number of allowed moves for any given graph). As an application of the general theory we analyze the properties of degree-preserving Markov chains based on elementary edge switchings. We give an exact yet simple formula for t...
December 20, 2011
Randomising networks using a naive `accept-all' edge-swap algorithm is generally biased. Building on recent results for nondirected graphs, we construct an ergodic detailed balance Markov chain with non-trivial acceptance probabilities for directed graphs, which converges to a strictly uniform measure and is based on edge swaps that conserve all in- and out-degrees. The acceptance probabilities can also be generalized to define Markov chains that target any alternative desire...
December 29, 2005
We study the problem of generating connected random graphs with no self-loops or multiple edges and that, in addition, have a given degree sequence. The generation method we focus on is the edge-switching Markov-chain method, whose functioning depends on a parameter w related to the method's core operation of an edge switch. We analyze two existing heuristics for adjusting w during the generation of a graph and show that they result in a Markov chain whose stationary distribu...
March 24, 2011
One of the most influential recent results in network analysis is that many natural networks exhibit a power-law or log-normal degree distribution. This has inspired numerous generative models that match this property. However, more recent work has shown that while these generative models do have the right degree distribution, they are not good models for real life networks due to their differences on other important metrics like conductance. We believe this is, in part, beca...
December 14, 2010
The generation of random graphs using edge swaps provides a reliable method to draw uniformly random samples of sets of graphs respecting some simple constraints, e.g. degree distributions. However, in general, it is not necessarily possible to access all graphs obeying some given con- straints through a classical switching procedure calling on pairs of edges. We therefore propose to get round this issue by generalizing this classical approach through the use of higher-order ...
December 3, 2009
Many applications in network analysis require algorithms to sample uniformly at random from the set of all graphs with a prescribed degree sequence. We present a Markov chain based approach which converges to the uniform distribution of all realizations for both the directed and undirected case. It remains an open challenge whether these Markov chains are rapidly mixing. For the case of directed graphs, we also explain in this paper that a popular switching algorithm fails ...
April 2, 2006
In statistical mechanical investigations on complex networks, it is useful to employ random graphs ensembles as null models, to compare with experimental realizations. Motivated by transcription networks, we present here a simple way to generate an ensemble of random directed graphs with, asymptotically, scale-free outdegree and compact indegree. Entries in each row of the adjacency matrix are set to be zero or one according to the toss of a biased coin, with a chosen probabi...
October 30, 2012
Markov chains are convenient means of generating realizations of networks with a given (joint or otherwise) degree distribution, since they simply require a procedure for rewiring edges. The major challenge is to find the right number of steps to run such a chain, so that we generate truly independent samples. Theoretical bounds for mixing times of these Markov chains are too large to be practically useful. Practitioners have no useful guide for choosing the length, and tend ...
March 7, 2018
An important problem arising in the study of complex networks, for instance in community detection and motif finding, is the sampling of graphs with fixed degree sequence. The equivalent problem of generating random 0,1 matrices with fixed row and column sums is frequently used as a quantitative tool in ecology. It has however proven very challenging to design sampling algorithms that are both fast and unbiased. This article focusses on Markov chain approaches for sampling,...
November 4, 2021
The uniform sampling of simple graphs matching a prescribed degree sequence is an important tool in network science, e.g. to construct graph generators or null-models. Here, the Edge Switching Markov Chain (ES-MC) is a common choice. Given an arbitrary simple graph with the required degree sequence, ES-MC carries out a large number of small changes, called edge switches, to eventually obtain a uniform sample. In practice, reasonably short runs efficiently yield approximate un...