March 27, 2023
In modified two-neighbour bootstrap percolation in two dimensions each site of $\mathbb Z^2$ is initially independently infected with probability $p$ and on each discrete time step one additionally infects sites with at least two non-opposite infected neighbours. In this note we establish that for this model the second term in the asymptotics of the infection time $\tau$ unexpectedly scales differently from the classical two-neighbour model, in which arbitrary two infected ne...
September 5, 2018
Bootstrap percolation is a class of cellular automata with random initial state. Two-dimensional bootstrap percolation models have three rough universality classes, the most studied being the `critical' one. For this class the scaling of the quantity of greatest interest -- the critical probability -- was determined by Bollob\'as, Duminil-Copin, Morris and Smith in terms of a simply defined combinatorial quantity called `difficulty', so the subject seemed closed up to finding...
May 17, 2012
In r-neighbour bootstrap percolation on the vertex set of a graph G, vertices are initially infected independently with some probability p. At each time step, the infected set expands by infecting all uninfected vertices that have at least r infected neighbours. We study the distribution of the time t at which all vertices become infected. Given t = t(n) = o(log n/log log n), we prove a sharp threshold result for the probability that percolation occurs by time t in d-neighbou...
May 7, 2023
We introduce a class of cellular automata growth models on the two-dimensional integer lattice with finite cross neighborhoods. These dynamics are determined by a Young diagram $\mathcal Z$ and the radius $\rho$ of the neighborhood, which we assume to be sufficiently large. A point becomes occupied if the pair of counts of currently occupied points on the horizontal and vertical parts of the neighborhood lies outside $\mathcal Z$. Starting with a small density $p$ of occupied...
December 21, 2006
We study a random graph model which is a superposition of the bond percolation model on $Z^d$ with probability $p$ of an edge, and a classical random graph $G(n, c/n)$. We show that this model, being a {\it homogeneous} random graph, has a natural relation to the so-called "rank 1 case" of {\it inhomogeneous} random graphs. This allows us to use the newly developed theory of inhomogeneous random graphs to describe the phase diagram on the set of parameters $c\geq 0$ and $0 \l...
August 15, 2023
We consider a percolation model, the vacant set $\mathcal{V}^u$ of random interlacements on $\mathbb{Z}^d$, $d \geq 3$, in the regime of parameters $u>0$ in which it is strongly percolative. By definition, such values of $u$ pinpoint a robust subset of the super-critical phase, with strong quantitative controls on large local clusters. In the present work, we give a new charaterization of this regime in terms of a single property, monotone in $u$, involving a disconnection es...
April 21, 2014
Percolation is the paradigm for random connectivity and has been one of the most applied statistical models. With simple geometrical rules a transition is obtained which is related to magnetic models. This transition is, in all dimensions, one of the most robust continuous transitions known. We present a very brief overview of more than 60 years of work in this area and discuss several open questions for a variety of models, including classical, explosive, invasion, bootstrap...
July 24, 2017
In this note, we discuss a generalization of Schramm's locality conjecture to the case of random-cluster models. We give some partial (modest) answers, and present several related open questions. Our main result is to show that the critical inverse temperature of the Potts model on $\mathbb Z^r\times(\mathbb Z/2n\mathbb Z)^{d-r}$ (with $r\ge3$) converges to the critical inverse temperature of the model on $\mathbb Z^d$ as $n$ tends to infinity. Our proof relies on the infrare...
May 4, 2017
In the polluted bootstrap percolation model, the vertices of a graph are independently declared initially occupied with probability p or closed with probability q. At subsequent steps, a vertex becomes occupied if it is not closed and it has at least r occupied neighbors. On the cubic lattice Z^d of dimension d>=3 with threshold r=2, we prove that the final density of occupied sites converges to 1 as p and q both approach 0, regardless of their relative scaling. Our result pa...
March 30, 2022
In this note we provide an alternative proof of the fact that subcritical bootstrap percolation models have a positive critical probability in any dimension. The proof relies on a recent extension of the classical framework of Toom. This approach is not only simpler than the original multi-scale renormalisation proof of the result in two and more dimensions, but also gives significantly better bounds. As a byproduct, we improve the best known bounds for the stability threshol...