April 24, 2012
Discrete mixture models are routinely used for density estimation and clustering. While conducting inferences on the cluster-specific parameters, current frequentist and Bayesian methods often encounter problems when clusters are placed too close together to be scientifically meaningful. Current Bayesian practice generates component-specific parameters independently from a common prior, which tends to favor similar components and often leads to substantial probability assigned to redundant components that are not needed to fit the data. As an alternative, we propose to generate components from a repulsive process, which leads to fewer, better separated and more interpretable clusters. We characterize this repulsive prior theoretically and propose a Markov chain Monte Carlo sampling algorithm for posterior computation. The methods are illustrated using simulated data as well as real datasets.
Similar papers 1
January 16, 2017
Employing nonparametric methods for density estimation has become routine in Bayesian statistical practice. Models based on discrete nonparametric priors such as Dirichlet Process Mixture (DPM) models are very attractive choices due to their flexibility and tractability. However, a common problem in fitting DPMs or other discrete models to data is that they tend to produce a large number of (sometimes) redundant clusters. In this work we propose a method that produces parsimo...
March 27, 2017
We develop a general class of Bayesian repulsive Gaussian mixture models that encourage well-separated clusters, aiming at reducing potentially redundant components produced by independent priors for locations (such as the Dirichlet process). The asymptotic results for the posterior distribution of the proposed models are derived, including posterior consistency and posterior contraction rate in the context of nonparametric density estimation. More importantly, we show that c...
October 9, 2022
Mixture models are a standard tool in statistical analysis, widely used for density modeling and model-based clustering. Current approaches typically model the parameters of the mixture components as independent variables. This can result in overlapping or poorly separated clusters when either the number of clusters or the form of the mixture components is misspecified. Such model misspecification can undermine the interpretability and simplicity of these mixture models. To a...
November 12, 2020
Repulsive mixture models have recently gained popularity for Bayesian cluster detection. Compared to more traditional mixture models, repulsive mixture models produce a smaller number of well separated clusters. The most commonly used methods for posterior inference either require to fix a priori the number of components or are based on reversible jump MCMC computation. We present a general framework for mixture models, when the prior of the `cluster centres' is a finite repu...
June 19, 2023
Mixture models are commonly used in applications with heterogeneity and overdispersion in the population, as they allow the identification of subpopulations. In the Bayesian framework, this entails the specification of suitable prior distributions for the weights and location parameters of the mixture. Widely used are Bayesian semi-parametric models based on mixtures with infinite or random number of components, such as Dirichlet process mixtures or mixtures with random numbe...
July 7, 2024
Finite mixture models are a useful statistical model class for clustering and density approximation. In the Bayesian framework finite mixture models require the specification of suitable priors in addition to the data model. These priors allow to avoid spurious results and provide a principled way to define cluster shapes and a preference for specific cluster solutions. A generic model estimation scheme for finite mixtures with a fixed number of components is available using ...
March 4, 2023
Model-based clustering of moderate or large dimensional data is notoriously difficult. We propose a model for simultaneous dimensionality reduction and clustering by assuming a mixture model for a set of latent scores, which are then linked to the observations via a Gaussian latent factor model. This approach was recently investigated by Chandra et al. (2020). The authors use a factor-analytic representation and assume a mixture model for the latent factors. However, performa...
July 28, 2022
We consider the problem of inferring an unknown number of clusters in replicated multinomial data. Under a model based clustering point of view, this task can be treated by estimating finite mixtures of multinomial distributions with or without covariates. Both Maximum Likelihood (ML) as well as Bayesian estimation are taken into account. Under a Maximum Likelihood approach, we provide an Expectation--Maximization (EM) algorithm which exploits a careful initialization procedu...
February 23, 2015
The use of a finite mixture of normal distributions in model-based clustering allows to capture non-Gaussian data clusters. However, identifying the clusters from the normal components is challenging and in general either achieved by imposing constraints on the model or by using post-processing procedures. Within the Bayesian framework we propose a different approach based on sparse finite mixtures to achieve identifiability. We specify a hierarchical prior where the hyperpar...
March 31, 2020
In many modern applications, there is interest in analyzing enormous data sets that cannot be easily moved across computers or loaded into memory on a single computer. In such settings, it is very common to be interested in clustering. Existing distributed clustering algorithms are mostly distance or density based without a likelihood specification, precluding the possibility of formal statistical inference. Model-based clustering allows statistical inference, yet research on...