May 8, 2012
Similar papers 2
April 9, 2015
In this paper, we study the sensitivity of the spectral clustering based community detection algorithm subject to a Erdos-Renyi type random noise model. We prove phase transitions in community detectability as a function of the external edge connection probability and the noisy edge presence probability under a general network model where two arbitrarily connected communities are interconnected by random external edges. Specifically, the community detection performance transi...
December 29, 2014
We present a fast spectral algorithm for community detection in complex networks. Our method searches for the partition with the maximum value of the modularity via the interplay of several refinement steps that include both agglomeration and division. We validate the accuracy of the algorithm by applying it to several real-world benchmark networks. On all these, our algorithm performs as well or better than any other known polynomial scheme. This allows us to extensively stu...
September 8, 2014
We prove the existence of an asymptotic phase transition threshold on community detectability for the spectral modularity method [M. E. J. Newman, Phys. Rev. E 74, 036104 (2006) and Proc. National Academy of Sciences. 103, 8577 (2006)] under a stochastic block model. The phase transition on community detectability occurs as the inter-community edge connection probability $p$ grows. This phase transition separates a sub-critical regime of small $p$, where modularity-based comm...
February 6, 2011
We present an asymptotically exact analysis of the problem of detecting communities in sparse random networks. Our results are also applicable to detection of functional modules, partitions, and colorings in noisy planted models. Using a cavity method analysis, we unveil a phase transition from a region where the original group assignment is undetectable to one where detection is possible. In some cases, the detectable region splits into an algorithmically hard region and an ...
January 15, 2019
Discovering low-dimensional structure in real-world networks requires a suitable null model that defines the absence of meaningful structure. Here we introduce a spectral approach for detecting a network's low-dimensional structure, and the nodes that participate in it, using any null model. We use generative models to estimate the expected eigenvalue distribution under a specified null model, and then detect where the data network's eigenspectra exceed the estimated bounds. ...
November 15, 2013
Many algorithms to detect communities in networks typically work without any information on the cluster structure to be found, as one has no a priori knowledge of it, in general. Not surprisingly, knowing some features of the unknown partition could help its identification, yielding an improvement of the performance of the method. Here we show that, if the number of clusters were known beforehand, standard methods, like modularity optimization, would considerably gain in accu...
November 3, 2016
In this article, we study spectral methods for community detection based on $ \alpha$-parametrized normalized modularity matrix hereafter called $ {\bf L}_\alpha $ in heterogeneous graph models. We show, in a regime where community detection is not asymptotically trivial, that $ {\bf L}_\alpha $ can be well approximated by a more tractable random matrix which falls in the family of spiked random matrices. The analysis of this equivalent spiked random matrix allows us to impro...
July 3, 2015
Community detection is a fundamental problem in network analysis with many methods available to estimate communities. Most of these methods assume that the number of communities is known, which is often not the case in practice. We study a simple and very fast method for estimating the number of communities based on the spectral properties of certain graph operators, such as the non-backtracking matrix and the Bethe Hessian matrix. We show that the method performs well under ...
November 3, 2015
Statistical significance of network clustering has been an unresolved problem since it was observed that community detection algorithms produce false positives even in random graphs. After a phase transition between undetectable and detectable cluster structures was discovered, the connection between spectra of adjacency matrices and detectability limits were shown, and both were calculated for a wide range of networks with arbitrary degree distributions and community structu...
June 5, 2013
Communities are fundamental entities for the characterization of the structure of real networks. The standard approach to the identification of communities in networks is based on the optimization of a quality function known as "modularity". Although modularity has been at the center of an intense research activity and many methods for its maximization have been proposed, not much it is yet known about the necessary conditions that communities need to satisfy in order to be d...