June 2, 2012
Similar papers 2
June 18, 2024
Fibonacci string-net condensate, a complex topological state that supports non-Abelian anyon excitations, holds promise for fault-tolerant universal quantum computation. However, its realization by a static-lattice Hamiltonian has remained elusive due to the inherent high-order interactions demanded. Here, we introduce a scalable dynamical string-net preparation (DSNP) approach, suitable even for near-term quantum processors, that can dynamically prepare the state through rec...
February 28, 2008
We discuss how to significantly reduce leakage errors in topological quantum computation by introducing an irrelevant error in phase, using the construction of a CNOT gate in the Fibonacci anyon model as a concrete example. To be specific, we construct a functional braid in a six-anyon Hilbert space that exchanges two neighboring anyons while conserving the encoded quantum information. The leakage error is $\sim$$10^{-10}$ for a braid of $\sim$100 interchanges of anyons. Appl...
October 21, 2022
Topological quantum computation (TQC) is one of the most striking architectures that can realize fault-tolerant quantum computers. In TQC, the logical space and the quantum gates are topologically protected, i.e., robust against local disturbances. The topological protection, however, requires rather complicated lattice models and hard-to-manipulate dynamics; even the simplest system that can realize universal TQC--the Fibonacci anyon system--lacks a physical realization, let...
August 25, 2020
We have studied ${\rm SU}(2)_k$ anyon models, assessing their prospects for topological quantum computation. In particular, we have compared the Ising ($k=2$) anyon and Fibonacci ($k=3$) anyon models, motivated by their potential for future realizations based on Majorana fermion quasiparticles or exotic fractional quantum-Hall states, respectively. The quantum computational performance of the different anyon models is quantified at single qubit level by the difference between...
June 28, 2023
The fusion basis of Fibonacci anyons supports unitary braid representations that can be utilized for universal quantum computation. We show a mapping between the fusion basis of three Fibonacci anyons, $\{|1\rangle, |\tau\rangle\}$, and the two length 4 Dyck paths via an isomorphism between the two dimensional braid group representations on the fusion basis and the braid group representation built on the standard $(2,2)$ Young diagrams using the Jones construction. This corre...
January 18, 2008
Topological quantum computation with Fibonacci anyons relies on the possibility of efficiently generating unitary transformations upon pseudoparticles braiding. The crucial fact that such set of braids has a dense image in the unitary operations space is well known; in addition, the Solovay-Kitaev algorithm allows to approach a given unitary operation to any desired accuracy. In this paper, the latter task is fulfilled with an alternative method, in the SU(2) case, based on a...
January 21, 2016
Topological phases of matter are a potential platform for the storage and processing of quantum information with intrinsic error rates that decrease exponentially with inverse temperature and with the length scales of the system, such as the distance between quasiparticles. However, it is less well-understood how error rates depend on the speed with which non-Abelian quasiparticles are braided. In general, diabatic corrections to the holonomy or Berry's matrix vanish at least...
November 29, 2023
A method, termed controlled-injection, is proposed for compiling three-qubit controlled gates within the non-abelian Fibonacci anyon model. Building on single-qubit compilation techniques with three Fibonacci anyons, the approach showcases enhanced accuracy and reduced braid length compared to the conventional decomposition method for the controlled three-qubit gates. This method necessitates only four two-qubit gates for decomposition, a notable reduction from the convention...
February 3, 2008
We remove the need to physically transport computational anyons around each other from the implementation of computational gates in topological quantum computing. By using an anyonic analog of quantum state teleportation, we show how the braiding transformations used to generate computational gates may be produced through a series of topological charge measurements.
April 2, 2024
We investigate a promising conformal field theory realization scheme for topological quantum computation based on the Fibonacci anyons, which are believed to be realized as quasiparticle excitations in the $\mathbb{Z}_3$ parafermion fractional quantum Hall state in the second Landau level with filling factor $\nu=12/5$. These anyons are non-Abelian and are known to be capable of universal topological quantum computation. The quantum information is encoded in the fusion channe...