June 7, 2012
Similar papers 5
October 1, 2003
We carry out a numerical study of fluctuations in the spectrum of regular graphs. Our experiments indicate that the level spacing distribution of a generic k-regular graph approaches that of the Gaussian Orthogonal Ensemble of random matrix theory as we increase the number of vertices. A review of the basic facts on graphs and their spectra is included.
June 5, 2018
Counting short cycles in bipartite graphs is a fundamental problem of interest in the analysis and design of low-density parity-check (LDPC) codes. The vast majority of research in this area is focused on algorithmic techniques. Most recently, Blake and Lin proposed a computational technique to count the number of cycles of length $g$ in a bi-regular bipartite graph, where $g$ is the girth of the graph. The information required for the computation is the node degree and the m...
September 14, 2022
The spectral and localization properties of heterogeneous random graphs are determined by the resolvent distributional equations, which have so far resisted an analytic treatment. We solve analytically the resolvent equations of random graphs with an arbitrary degree distribution in the high-connectivity limit, from which we perform a thorough analysis of the impact of degree fluctuations on the spectral density, the inverse participation ratio, and the distribution of the lo...
January 19, 2024
In this paper we will give a structure theory for regular graphs with fixed smallest eigenvalue. As a consequence of this theory, we show that a $k$-regular graph with smallest eigenvalue $-\lambda$ has clique number linear in $k$ if $k$ is large with respect to $\lambda$.
May 31, 2007
The largest eigenvalue of the adjacency matrix of a network plays an important role in several network processes (e.g., synchronization of oscillators, percolation on directed networks, linear stability of equilibria of network coupled systems, etc.). In this paper we develop approximations to the largest eigenvalue of adjacency matrices and discuss the relationships between these approximations. Numerical experiments on simulated networks are used to test our results.
June 27, 2022
Quantifying the eigenvalue spectra of large random matrices allows one to understand the factors that contribute to the stability of dynamical systems with many interacting components. This work explores the effect that the interaction network between components has on the eigenvalue spectrum. We build upon previous results, which usually only take into account the mean degree of the network, by allowing for non-trivial network degree heterogeneity. We derive closed-form expr...
February 8, 2022
In graph analyses, directed edges are often approximated to undirected ones so that the adjacency matrices may be symmetric. However, such simplification has not been thoroughly verified. In this study, we investigate how directedness affects the graph spectra by introducing random directization, which is an opposite operation of neglecting edge directions. We analytically reveal that uniformly random directization typically conserves the relative spectral structure of the ad...
October 30, 2007
The sum of the absolute values of the eigenvalues of a graph is called the energy of the graph. We study the problem of finding graphs with extremal energy within specified classes of graphs. We develop tools for treating such problems and obtain some partial results. Using calculus, we show that an extremal graph ``should'' have a small number of distinct eigenvalues. However, we also present data that shows in many cases that extremal graphs can have a large number of disti...
February 17, 2020
We describe a new method to remove short cycles on regular graphs while maintaining spectral bounds (the nontrivial eigenvalues of the adjacency matrix), as long as the graphs have certain combinatorial properties. These combinatorial properties are related to the number and distance between short cycles and are known to happen with high probability in uniformly random regular graphs. Using this method we can show two results involving high girth spectral expander graphs. F...
July 7, 2000
We study numerically and analytically the spectrum of incidence matrices of random labeled graphs on N vertices : any pair of vertices is connected by an edge with probability p. We give two algorithms to compute the moments of the eigenvalue distribution as explicit polynomials in N and p. For large N and fixed p the spectrum contains a large eigenvalue at Np and a semi-circle of "small" eigenvalues. For large N and fixed average connectivity pN (dilute or sparse random matr...