July 10, 2012
We study systematically the BPS spectra of N=2 SYM coupled to half--hypermultiplets, the basic example being E_7 SYM coupled to a half--hyper in the 56 irrepr. In order to do this, we determine the BPS quivers with superpotential of such N=2 models using a new technique we introduce. The computation of the BPS spectra in the various chambers is then reduced to the Representation Theory of the resulting quivers. We use the quiver description to study the BPS spectrum at both strong and weak coupling. The following models are discussed in detail: SU(6) SYM coupled to a half 20, SO(12) SYM coupled to a half 32, and E_7 SYM coupled to a half 56. For models with gauge group SU(2) x SO(2n) and matter in the half (2,2n) we find strongly coupled chambers with a BPS spectrum consisting of just finitely many hypermultiplets.
Similar papers 1
December 14, 2012
We present a survey of the computation of the BPS spectrum of a general four-dimensional N=2 supersymmetric gauge theory in terms of the Representation Theory of quivers with superpotential. We focus on SYM with a general gauge group G coupled to standard matter in arbitrary representations of G (consistent with a non--positive beta--function). The situation is particularly tricky and interesting when the matter consists of an odd number of half-hypermultiplets: we describe i...
August 14, 2012
Using recent results on BPS quiver theory, we develop a group theoretical method to describe the quiver mutations encoding the quantum mechanical duality relating the spectra of distinct quivers. We illustrate the method by computing the BPS spectrum of the infinite weak chamber of some examples of N=2 supersymmetric gauge models without and with quark hypermultiplets.
December 16, 2011
We explore the relationship between four-dimensional N=2 quantum field theories and their associated BPS quivers. For a wide class of theories including super-Yang-Mills theories, Argyres-Douglas models, and theories defined by M5-branes on punctured Riemann surfaces, there exists a quiver which implicitly characterizes the field theory. We study various aspects of this correspondence including the quiver interpretation of flavor symmetries, gauging, decoupling limits, and fi...
April 2, 2012
We study the basic features of BPS quiver mutations in 4D $\mathcal{N}=2$ supersymmetric quantum field theory with $G=ADE$ gauge symmetries.\ We show, for these gauge symmetries, that there is an isotropy group $\mathcal{G}_{Mut}^{G}$ associated to a set of quiver mutations capturing information about the BPS spectra. In the strong coupling limit, it is shown that BPS chambers correspond to finite and closed groupoid orbits with an isotropy symmetry group $\mathcal{G}_{strong...
September 22, 2011
We study the BPS spectra of N=2 complete quantum field theories in four dimensions. For examples that can be described by a pair of M5 branes on a punctured Riemann surface we explain how triangulations of the surface fix a BPS quiver and superpotential for the theory. The BPS spectrum can then be determined by solving the quantum mechanics problem encoded by the quiver. By analyzing the structure of this quantum mechanics we show that all asymptotically free examples, Argyre...
February 18, 1999
We study N=(2,2) supersymmetric abelian gauge theories in two dimensions. The exact BPS spectrum of these models is shown to coincide with the spectrum of massive hypermultiplets of certain N=2 supersymmetric gauge theories in four dimensions. A special case of these results involves a surprising connection between four-dimensional N=2 SQCD with N colours and N_{f}>N flavours at the root of the baryonic Higgs branch and the supersymmetric CP^{2N-N_{f}-1} sigma-model in two di...
May 23, 2013
We show that the BPS spectrum of pure SU(3) four-dimensional super Yang-Mills with N=2 supersymmetry exhibits a surprising phenomenon: there are regions of the Coulomb branch where the growth of the BPS degeneracies with the charge is exponential. We show this using spectral networks and independently using wall-crossing formulae and quiver methods. The computations using spectral networks provide a very nontrivial example of how these networks determine the four-dimensional ...
April 2, 2013
Extending results of arXiv:1112.3984, we show that all rank 1 N=2 SCFT's in the sequence H_1, H_2, D_4 E_6, E_7, E_8 have canonical finite BPS chambers containing precisely 2 h(F)=12(Delta-1) hypermultiplets. The BPS spectrum of the canonical BPS chambers saturates the conformal central charge c, and satisfies some intriguing numerology.
July 29, 2021
We study the BPS spectrum of four-dimensional $\mathcal{N}=2$ supersymmetric Yang-Mills theory with gauge group $SU(2)$ and a massive adjoint hypermultiplet, which has an extremely intricate structure with infinite spectrum in all chambers of its Coulomb moduli space, and is not well understood. We build on previous results by employing the BPS quiver description of the spectrum, and explore the qualitative features in detail using numerical techniques. We find novel and unex...
December 8, 2000
We apply ideas that have appeared in the study of D-branes on Calabi-Yau compactifications to the derivation of the BPS spectrum of field theories. In particular, we identify an orbifold point whose fractional branes can be thought of as ``partons'' of the BPS spectrum of N=2 pure SU(N) SYM. We derive the BPS spectrum and lines of marginal stability branes near that orbifold, and compare our results with the spectrum of the field theories.