ID: 1208.6255

Hierarchy in directed random networks

August 30, 2012

View on ArXiv
Enys Mones
Physics
Condensed Matter
Computer Science
Physics and Society
Statistical Mechanics
Social and Information Netwo...
Data Analysis, Statistics an...

In recent years, the theory and application of complex networks have been quickly developing in a markable way due to the increasing amount of data from real systems and to the fruitful application of powerful methods used in statistical physics. Many important characteristics of social or biological systems can be described by the study of their underlying structure of interactions. Hierarchy is one of these features that can be formulated in the language of networks. In this paper we present some (qualitative) analytic results on the hierarchical properties of random network models with zero correlations and also investigate, mainly numerically, the effects of different type of correlations. The behavior of hierarchy is different in the absence and the presence of the giant components. We show that the hierarchical structure can be drastically different if there are one-point correlations in the network. We also show numerical results suggesting that hierarchy does not change monotonously with the correlations and there is an optimal level of non-zero correlations maximizing the level of hierarchy.

Similar papers 1